

Tapis CLI How-To Guide

The Tapis CLI is python-based tooling for interacting with the
Tapis Platform. [https://tacc-cloud.readthedocs.io/projects/agave/en/latest/]
Below is a series of short guides to accomplishing common tasks with the Tapis
CLI. Most guides assume you already have the CLI installed and that
you are authenticated with one of the tenants. Additional help is located in the
Tapis CLI Reference Documentation. [https://tapis-cli.readthedocs.io/en/latest/]

Getting Started:

	Install the CLI

	Request Access to a Tenant

	Initialize a Session

API Essentials:

	Interact with Systems

	Perform Basic File Operations

	Import Data from Alternative Sources

	Share Data with Others

	Find an Application

	Prepare and Submit a Job

Advanced API:

	Create a Private System

	Modify an Existing System

	Create a Custom App

	Modify an Existing App

	Share an App with Others

	Set up a Workflow

Actors:

	Work with Actors

	Initialize a new Tapis Actor project

Find Additional Help

Please visit the Reference Docs [https://tapis-cli.readthedocs.io/en/latest/]
for the Tapis CLI for additional support

Install the CLI

The Tapis CLI is available as a Python package. We highly recommend using Python
3.7+ as the Python runtime behind the Tapis CLI. We support Python 2.7 for
legacy applications, but on a best-effort basis as Python 2.7 is a deprecated
language.

Install with Pip

$ pip install tapis-cli

Install from Source

$ git clone https://github.com/TACC-Cloud/tapis-cli-ng.git
$ cd tapis-cli-ng/
$ pip install --upgrade --user .

Run in a Container

$ docker run --rm -it -v ${PWD}:/work -v ${HOME}/.agave:/root/.agave \
 tacc/tapis-cli-ng:latest /bin/bash

Request Access to a Tenant

Each tenant has its own criteria for admitting access. By default, anyone can
get access to the tacc.prod tenant by creating a
TACC Account [https://portal.tacc.utexas.edu/account-request].

Please visit the following pages to apply for access to other tenants as
appropriate:

	Name

	URL

	3DEM

	https://3dem.org/

	Agave Public Tenant

	https://public.agaveapi.co/

	Araport

	https://www.araport.org/

	CyVerse Science APIs

	https://cyverse.org/Science-APIs

	DesignSafe

	https://www.designsafe-ci.org/

	Science Gateways Community Institute

	https://sciencegateways.org/

	SD2E

	https://sd2e.org/

	TACC Prod

	https://portal.tacc.utexas.edu

	UTRC Portal

	https://utrc.tacc.utexas.edu/

	VDJ Server

	https://vdjserver.org/

Initialize a Session

You must set up a Tapis session on each host where you will use the Tapis CLI.
This is a scripted process implemented by the command tapis auth init.
This is a one-time operation where you will be asked to agree to terms, select
a tenant, and finally enter a username and password for that tenant.

$ tapis auth init

Use of Tapis requires acceptance of the TACC Acceptable Use Policy
which can be found at https://portal.tacc.utexas.edu/tacc-usage-policy

Do you agree to abide by this AUP? (type 'y' or 'n' then Return) y

Use of Tapis requires acceptance of the Tapis Project Code of Conduct
which can be found at https://tapis-project.org/code-conduct

Do you agree to abide by this CoC? (type 'y' or 'n' then Return) y

To improve our ability to support Tapis and the Tapis CLI, we would like to
collect your IP address, operating system and Python version. No personally-
identifiable information will be collected. This data will only be shared in
aggregate form with funders and Tapis platform stakeholders.

Do you consent to this reporting? [Y/n]: Y
+---------------+--------------------------------------+--+
| Name | Description | URL |
+---------------+--------------------------------------+--+
3dem	3dem Tenant	https://api.3dem.org/
agave.prod	Agave Public Tenant	https://public.agaveapi.co/
araport.org	Araport	https://api.araport.org/
bridge	Bridge	https://api.bridge.tacc.cloud/
designsafe	DesignSafe	https://agave.designsafe-ci.org/
iplantc.org	CyVerse Science APIs	https://agave.iplantc.org/
irec	iReceptor	https://irec.tenants.prod.tacc.cloud/
portals	Portals Tenant	https://portals-api.tacc.utexas.edu/
sd2e	SD2E Tenant	https://api.sd2e.org/
sgci	Science Gateways Community Institute	https://sgci.tacc.cloud/
tacc.prod	TACC	https://api.tacc.utexas.edu/
vdjserver.org	VDJ Server	https://vdj-agave-api.tacc.utexas.edu/
+---------------+--------------------------------------+--+
Enter a tenant name [tacc.prod]:
tacc.prod username: taccuser
tacc.prod password for taccuser:

Session tokens and other metadata are stored in ~/.agave/config.json as well
as in ~/.env.

Interact with Systems

A Tapis system is a server or collection of servers associated with a single
hostname. They may be public or private, and they may either be storage
systems (used for storing files) or execution systems (used for running
jobs).

On some tenants, users are provided private storage and execution systems
attached to TACC resources. If you would like to create your own systems, skip
ahead to
Create a Private System.

Warning

The tacc.prod tenant likely does not contain default systems for your
username. Skip ahead to
Create a Private System
before working through this guide.

Find Systems

Systems can be discovered using the tapis systems list command:

On this tenant, the user taccuser sees numerous storage and execution
systems. All systems are either public or private (with varying degrees of
privacy), each of which are shown here.

On tenants with many more systems, it may be useful to narrow the list with
the tapis systems search command. For example, to discover systems only
owned by you:

$ tapis systems search --owner eq taccuser
+-------------------------+--+-----------+---------+
| id | name | type | default |
+-------------------------+--+-----------+---------+
| tacc.stampede2.taccuser | Execution system for TACC Stampede2 | EXECUTION | False |
| tacc.work.taccuser | Storage system for TACC work directory | STORAGE | False |
+-------------------------+--+-----------+---------+

Other useful searches might include:

$ tapis systems search --owner neq taccuser # systems you don't own
$ tapis systems search --public eq true # only public systems
$ tapis systems search --public eq false # only private systems
$ tapis systems search --type eq EXECUTION # only execution systems
$ tapis systems search --type eq STORAGE # only storage systems
$ tapis systems search --default eq true # your default system

You can also chain multiple search parameters. For example, to display only
private storage systems:

$ tapis systems search --type eq STORAGE --public eq false
+--------------------+--+---------+---------+
| id | name | type | default |
+--------------------+--+---------+---------+
| tacc.work.taccuser | Storage system for TACC work directory | STORAGE | False |
+--------------------+--+---------+---------+

Note

Don’t forget to replace instances of taccuser with your actual username
on the tenant

Discover System Hostname and Default Paths

To see additional system information, including hostname, root folder locations,
and availability, use the tapis systems show command with a system ID. For
example, find out more information about your personal storage system as
follows:

$ tapis systems show -f json tacc.work.taccuser

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	{
 "id": "tacc.work.taccuser",
 "name": "Storage system for the TACC WORK directory",
 "type": "STORAGE",
 "default": false,
 "available": true,
 "description": "Storage system for the TACC WORK directory via Stampede2",
 "environment": null,
 "executionType": null,
 "globalDefault": false,
 "lastModified": "7 hours ago",
 "login": null,
 "maxSystemJobs": null,
 "maxSystemJobsPerUser": null,
 "owner": "taccuser",
 "public": false,
 "queues": null,
 "revision": 1,
 "scheduler": null,
 "scratchDir": null,
 "site": null,
 "status": "UP",
 "storage": {
 "proxy": null,
 "protocol": "SFTP",
 "mirror": false,
 "port": 22,
 "auth": {
 "type": "SSHKEYS"
 },
 "publicAppsDir": null,
 "host": "stampede2.tacc.utexas.edu",
 "rootDir": "/work/01234/taccuser",
 "homeDir": "/"
 },
 "uuid": "383424038079107562-242ac112-0001-006",
 "workDir": null
}

The -f json flag was provided to render all information about the
system. As described above, this storage system is a gateway to your private
storage space on the TACC $WORK filesystem. The rootDir is the virtual root
path for operations performed on this system. The highlighted lines emphasize
the host and root directory when performing operations against this system.

In addition to standard host and path information, execution systems also contain
information about queue types and availability.

Check System Status

It may be useful to check the status (availability) of a system in a scriptable
way prior to, e.g., uploading files as part of a pipeline. The following command
can be used with extra flags to strip out the useful part of the response:

$ tapis systems show -c status -f value tacc.work.taccuser
UP

Note

Use tapis command subcommand --help to find usage information for
each command

Perform Basic File Operations

Data in the Tapis ecosystem can be managed using the files service. With
many parallels to Unix-style commands (ls, mv, cp, rm, etc.), the
tapis files - commands can be used to list files, upload and download data,
remotely manage and organize data, and import external data from the web.

List Files and Navigate the File Tree

To list the files available to you on a storage system, use:

$ tapis files list agave://tacc.work.taccuser/
+-----------+--------------+--------+
| name | lastModified | length |
+-----------+--------------+--------+
jobs	2 years ago	4096
maverick	2 years ago	4096
stampede2	2 years ago	4096
wrangler	2 years ago	4096
+-----------+--------------+--------+

The URI provided on the command line (agave://tacc.work.taccuser/) takes the
form:

	agave:// => refer to an Agave URI

	tacc.work.taccuser => the name of the storage system

	/ => the relative path from the root directory on the storage system

To make a new folder, then list the contents of that folder:

$ tapis files mkdir agave://tacc.work.taccuser/ test_folder
+--------------+---------------------------------------+
| Field | Value |
+--------------+---------------------------------------+
name	test_folder
uuid	2668156827089366550-242ac112-0001-002
owner	taccuser
path	/test_folder
lastModified	2020-05-12T07:48:19.141-05:00
source	None
status	STAGING_COMPLETED
nativeFormat	dir
systemId	tacc.work.taccuser
+--------------+---------------------------------------+

$ tapis files list agave://tacc.work.taccuser/test_folder/
 # currently empty

To remove a folder, use the tapis files delete:

$ tapis files delete agave://tacc.work.taccuser/test_folder
+--------------+-------+
| Field | Value |
+--------------+-------+
deleted	1
skipped	0
warnings	0
elapsed_msec	2318
+--------------+-------+

Warning

The tapis files delete command will delete folders with or without contents.

Upload and Download Files

Files can be transferred from your local machine to the remote storage system
using tapis files upload, and from the remote storage system to your
local machine using the tapis files download.

First, find or create a local file and upload it to the storage system (recreate
the test_folder/ if you deleted it in the previous example):

$ touch local_file.txt
$ echo 'Hello, world!' > local_file.txt
$ tapis files upload agave://tacc.work.taccuser/test_folder local_file.txt
+-------------------+-------------+
| Field | Value |
+-------------------+-------------+
uploaded	1
skipped	0
messages	0
bytes_transferred	14.00 bytes
elapsed_sec	2
+-------------------+-------------+

$ tapis files list agave://tacc.work.taccuser/test_folder/
+----------------+----------------+--------+
| name | lastModified | length |
+----------------+----------------+--------+
| local_file.txt | 26 seconds ago | 14 |
+----------------+----------------+--------+

Use tapis files copy to make a copy of the file on the remote system:

$ tapis files copy agave://tacc.work.taccuser/test_folder/local_file.txt /test_folder/remote_copy.txt
+--------------+--+
| Field | Value |
+--------------+--+
name	remote_copy.txt
uuid	6484805032038306282-242ac112-0001-002
owner	taccuser
path	/test_folder/remote_copy.txt
lastModified	2020-05-12T07:51:52.187-05:00
source	https://api.tacc.utexas.edu/files/v2/media/system/tacc.work.taccuser//test_folder/local_file.txt
status	STAGING_COMPLETED
nativeFormat	raw
systemId	tacc.work.taccuser
+--------------+--+

$ tapis files list agave://tacc.work.taccuser/test_folder
+-----------------+---------------+--------+
| name | lastModified | length |
+-----------------+---------------+--------+
| local_file.txt | 7 minutes ago | 14 |
| remote_copy.txt | 3 minutes ago | 14 |
+-----------------+---------------+--------+

Note that the second argument provided on the command line contains both the
name of the copied file, and the full path relative to the root directory for
the storage system.

To download the result:

$ tapis files download agave://tacc.work.taccuser/test_folder/remote_copy.txt
$ ls
local_file.txt remote_copy.txt
$ cat remote_copy.txt
Hello, world!

Note

Use the -W flag to recursively download the contents of a whole directory

Other File Operations

Using the Tapis CLI, files and folders can also be renamed, moved, and deleted
remotely on the storage system. The syntax for these operations is very similar
to the tapis files copy command syntax. Here are some common examples:

Rename a file in place
$ tapis files move agave://tacc.work.taccuser/test_folder/remote_copy.txt /test_folder/renamed.txt

Make a subfolder in the test_folder/ folder
$ tapis files mkdir agave://tacc.work.taccuser/test_folder/ subfolder

Rename a folder in place
$ tapis files move agave://tacc.work.taccuser/test_folder/subfolder /test_folder/renamed_folder

Move a file into that subfolder
$ tapis files move agave://tacc.work.taccuser/test_folder/renamed.txt /test_folder/renamed_folder/renamed.txt

Delete a file or a folder
$ tapis files delete agave://tacc.work.taccuser/test_folder/renamed_folder

Be cautious with tapis files move and tapis files delete commands. Just
like a Linux filesystem, files inadvertently deleted or overwritten are most
likely unrecoverable.

File or Folder History

You can list the history of events for a specific file or folder. This will give
more descriptive information (when applicable) related to number of retries,
permission grants and revocations, reasons for failure, and hiccups that may
have occurred in the transfer process.

$ tapis files history agave://tacc.work.taccuser/test_folder/local_file.txt
+-------------------+---------------+---+
| status | created | description |
+-------------------+---------------+---+
STAGING_QUEUED	6 minutes ago	File/folder queued for staging
STAGING_COMPLETED	6 minutes ago	Your scheduled transfer of http://129.114.97.130/local_file.txt completed
		staging. You can access the raw file on Storage system for TACC work
		directory at /work/01234/taccuser/test_folder/local_file.txt or via the API
		at https://api.tacc.utexas.edu/files/v2/media/system/tacc.work.taccuser//test
		_folder/local_file.txt.
DOWNLOAD	4 minutes ago	File was downloaded
+-------------------+---------------+---+

Further Help

Reminder: at any time, you can issue a Tapis CLI command with the -h flag to
find more information on the function and usage of the command. Extensive Tapis
CLI documentation can be found
HERE [https://tapis-cli.readthedocs.io/en/latest/].

Import Data from Alternative Sources

Warning

This functionality does not yet exist

The Tapis platform enables management of multiple storage systems representing
different hosts under the same tenant namespace. Data can be moved efficiently
directly between hosts (storage systems).

Import Files from other Systems

To import data from other storage systems, e.g. from the community data space to
your private data space, use tapis files import:

$ tapis files import agave://community-data/public_file.txt /
 agave://private-system/destination_folder/

With the above syntax, the file located at the root directory on the
community-data storage system will be imported to your private storage
system, and placed in your directory destination_folder.

Please also note that even though you are able to import files from other
Tapis storage systems, you may not always need to import those files. Most
applications of Tapis will allow you to provide the complete URI path to the
file, e.g. agave://community-data/public_file.txt. This is useful, for
example, in the case of large reference libraries. Pointing to the remote
libraries rather than copying them saves time and disk space.

Import Files from the Web

You can also import files from the web using the URL. This is useful
to import files that are not part of an existing Tapis storage system:

$ tapis files import https://website.com/raw_file \
 agave://private-system/destination_folder

Share Data with Others

The Tapis CLI makes it possible to share data with other users on the same
tenant. Use your best judgement in deciding whether to copy shared data or link
against shared data with the understanding that storage space is limited. The
guide below demonstrates how to modify permissions on a given data set to share
it in place without copying.

Find Another User

To share files with another user on the same tenant, you must first know their
username. The Tapis CLI has a set of tools that can be used to find other users.
View your own user profile by issuing:

$ tapis profiles show self
+--------------+--------------------+
| Field | Value |
+--------------+--------------------+
first_name	Tacc
last_name	User
email	taccuser@gmail.com
mobile_phone	
phone	
username	taccuser
+--------------+--------------------+

Each of the fields stored in the user profile is queryable using the tapis
profiles search command. Some more common examples include:

Search for another user by first name
$ tapis profiles search --first-name eq John

Search for another user by last name
$ tapis profiles search --last-name eq Doe

Search for another user by email address
$ tapis profiles search --email eq jdoe@utexas.edu

Once you have identified the correct username, you can query it to make sure it
is the person you are looking for:

$ tapis profiles show jdoe
+--------------+-----------------+
| Field | Value |
+--------------+-----------------+
first_name	John
last_name	Doe
email	jdoe@utexas.edu
mobile_phone	
phone	
username	jdoe
+--------------+-----------------+

Share Files with Another User

File permissions are managed similar to Unix file permissions. To list the
permissions on an existing file on one of your storage systems, issue:

To add permissions for another user (with username jdoe) to read the file,
use the tapis files pems grant with the following positional arguments:

Warning

Recursive permission changes are not yet implemented

Now, a user with username jdoe has permissions to read the file. Valid
values for setting permission are ALL, READ, WRITE, READ_WRITE, EXECUTE,
READ_EXECUTE, WRITE_EXECUTE, and NONE. However, before jdoe can access the
file, they also need permissions on the private storage system. To see who has
access to your storage system, perform:

$ tapis systems roles list tacc.work.taccuser
+----------+-------+
| username | role |
+----------+-------+
| taccuser | OWNER |
+----------+-------+

To add your collaborator to your system use:

$ tapis systems roles grant tacc.work.taccuser jdoe GUEST
+----------+---------+
| Field | Value |
+----------+---------+
| username | jdoe |
| role | GUEST |
+----------+---------+

$ tapis systems roles list tacc.work.taccuser
+----------+-------+
| username | role |
+----------+-------+
| taccuser | OWNER |
| jdoe | GUEST |
+----------+-------+

Now, a user with username jdoe can see files with the appropriate
permissions on your storage system. Valid values for setting a role include
GUEST, USER, PUBLISHER, ADMIN, and OWNER.

Finally, ask your collaborator to download the file with the exact same command
you use to download the file:

$ tapis files download agave://tacc.work.taccuser/test_folder/local_file.txt

Revoke Permissions

If you want to revoke permissions, make sure to revoke permissions both on the
shared file as well as the storage system:

Revoke permissions on the shared file
$ tapis files pems revoke agave://tacc.work.taccuser/test_folder/local_file.txt jdoe

Revoke permissions on the private storage system
$ tapis systems roles revoke tacc.work.taccuser jdoe

You can also blanket revoke permissions from all non-owner users:

Revoke permissions on the shared file for all users
$ tapis files pems drop agave://tacc.work.taccuser/test_folder/local_file.txt

Revoke permissions on the private storage system for all users
$ tapis systems roles drop tacc.work.taccuser

Share Files Using Postits

Another convenient way to share data is the Tapis postits service. Postits
generate a short URL with a user-specified lifetime and limited number of uses.
Anyone with the URL can paste it into a web browser, or curl against it on the
command line. To create a postit:

$ tapis postits create -L 3600 -m 5 agave://tacc.work.taccuser/test_folder/file.txt
+---------------+---+
| Field | Value |
+---------------+---+
postit	a88eed9c3bb7ae9f8dca6a8c1cc8c25f
remainingUses	5
expires	2020-05-12T09:21:32-05:00
url	https://api.tacc.utexas.edu/files/v2/media/system/tacc.work.taccuser/test_folder/local_file.txt
creator	taccuser
created	2020-05-12T08:21:32-05:00
noauth	False
method	GET
postit_url	https://api.tacc.utexas.edu//postits/v2/a88eed9c3bb7ae9f8dca6a8c1cc8c25f
+---------------+---+

The response from this command includes a URL which can be pasted into a web
browser or curled on the command line:

https://api.tacc.utexas.edu//postits/v2/a88eed9c3bb7ae9f8dca6a8c1cc8c25f

This postit will work for 5 downloads (-m 5) and only available for one hour
(3600 seconds, -L 3600). The creator of the postit can list and delete their
postits with the following commands:

$ tapis postits list
+----------------------------------+---------------+---------------------------+---+
| postit | remainingUses | expires | url |
+----------------------------------+---------------+---------------------------+---+
| a88eed9c3bb7ae9f8dca6a8c1cc8c25f | 4 | 2020-05-12T09:21:32-05:00 | https://api.tacc.utexas.edu/files/v2/media/system/tacc.work.taccuser/test_folder/local_file.txt |
+----------------------------------+---------------+---------------------------+---+

$ tapis postits delete a88eed9c3bb7ae9f8dca6a8c1cc8c25f

Find an Application

Each Tapis tenant has its own set of public applications (“apps” for short) that
are available for tenant-authenticated users to run. Public apps are also tied
to public execution systems.

List Available Applications

The tapis apps list command can be used to list all apps available to you.
The tacc.prod tenant has the following apps available:

$ tapis apps list
+-----------------------------------+------------------+
| id | label |
+-----------------------------------+------------------+
tapis.app.imageclassify-1.0u3	Image Classifier
tapis.app.imageclassify-1.0u2	Image Classifier
tapis.app.imageclassify-1.0u1	Image Classifier
vina-ls5-1.1.2u3	Autodock Vina
vina-ls5-1.1.2u2	Autodock Vina
vina-ls5-1.1.2u1	Autodock Vina
opensees-2.4.4-slurm-2.4.4.5804u1	OpenSees
opensees-fork-2.4.4.5804u2	OpenSees
opensees-2.4.4.5804u1	OpenSees
opensees-fork-2.4.4.5804u1	OpenSees
vina-lonestar-1.1.2u4	Autodock Vina
vina-lonestar-1.1.2u3	Autodock Vina
vina-lonestar-1.1.2u2	Autodock Vina
pdb2pdbqt-1.00u1	pdb2pdbqt
+-----------------------------------+------------------+

Public apps will have a revision tag at the end (u1, u2, u3 etc.).
The higher the number, the newer the revision.

Search for Applications by Name

Use tapis apps search to search for apps on a number of different criteria.
Some common searches might include:

Search for an app by part of its name
$ tapis apps search --name like imageclassify

Search for apps that you own
$ tapis apps search --owner eq taccuser

Search for apps that you don't own (public or shared with you)
$ tapis apps search --owner neq taccuser

Display Application Information

Many applications you will find in the catalog can be used in multiple ways. It
is up to the developer of an app to decide which function(s) of the particular
tool the app will perform, as well as what are the expected inputs, parameters,
and outputs. To see the description of an app use:

$ tapis apps show tapis.app.imageclassify-1.0u3
+--------------------------+--+
| Field | Value |
+--------------------------+--+
id	tapis.app.imageclassify-1.0u3
name	tapis.app.imageclassify
version	1.0
revision	3
label	Image Classifier
lastModified	6 months ago
shortDescription	Classify an image using a small ImageNet model
longDescription	
owner	cicsvc
isPublic	True
executionType	CLI
executionSystem	tapis.execution.system
deploymentSystem	docking.storage
available	True
parallelism	SERIAL
defaultProcessorsPerNode	1
defaultMemoryPerNode	1
defaultNodeCount	1
defaultMaxRunTime	None
defaultQueue	None
helpURI	
deploymentPath	/home/docking/api/v2/prod/apps/tapis.app.imageclassify-1.0u3.zip
templatePath	wrapper.sh
testPath	test/test.sh
checkpointable	False
uuid	3162334876895875561-242ac119-0001-005
icon	None
+--------------------------+--+

The output of this command is a table-formatted description of the app including
select metadata. To see all of the app details including inputs, parameters, and
outputs, use the -f json flag to show json format:

$ tapis apps show -f json tapis.app.imageclassify-1.0u3

{
 "id": "tapis.app.imageclassify-1.0u3",
 "name": "tapis.app.imageclassify",
 "version": "1.0",
 "revision": 3,
 "label": "Image Classifier",
 "lastModified": "6 months ago",
 "shortDescription": "Classify an image using a small ImageNet model",
 "longDescription": "",
 "owner": "cicsvc",
 "isPublic": true,
 "executionType": "CLI",
 "executionSystem": "tapis.execution.system",
 "deploymentSystem": "docking.storage",
 "available": true,
 "parallelism": "SERIAL",
 "defaultProcessorsPerNode": 1,
 "defaultMemoryPerNode": 1,
 "defaultNodeCount": 1,
 "defaultMaxRunTime": null,
 "defaultQueue": null,
 "tags": [
 "tensorflow",
 "ImageNet"
],
 "ontology": [],
 "helpURI": "",
 "deploymentPath": "/home/docking/api/v2/prod/apps/tapis.app.imageclassify-1.0u3.zip",
 "templatePath": "wrapper.sh",
 "testPath": "test/test.sh",
 "checkpointable": false,
 "modules": [
 "load tacc-singularity/2.6.0"
],
 "inputs": [],
 "parameters": [
 {
 "id": "imagefile",
 "value": {
 "visible": true,
 "required": true,
 "type": "string",
 "order": 0,
 "enquote": false,
 "default": "https://texassports.com/images/2015/10/16/bevo_1000.jpg",
 "validator": null
 },
 "details": {
 "label": "Image to classify",
 "description": "",
 "argument": "--image_file ",
 "showArgument": true,
 "repeatArgument": false
 },
 "semantics": {
 "minCardinality": 1,
 "maxCardinality": 1,
 "ontology": [
 "http://edamontology.org/format_3547"
]
 }
 },
 {
 "id": "predictions",
 "value": {
 "visible": true,
 "required": true,
 "type": "number",
 "order": 0,
 "enquote": false,
 "default": 5,
 "validator": null
 },
 "details": {
 "label": "Number of predictions to return",
 "description": null,
 "argument": "--num_top_predictions ",
 "showArgument": true,
 "repeatArgument": false
 },
 "semantics": {
 "minCardinality": 1,
 "maxCardinality": 1,
 "ontology": []
 }
 }
],
 "outputs": [],
 "uuid": "3162334876895875561-242ac119-0001-005",
 "icon": null,
 "_links": {
 "self": {
 "href": "https://api.tacc.utexas.edu/apps/v2/tapis.app.imageclassify-1.0u3"
 },
 "executionSystem": {
 "href": "https://api.tacc.utexas.edu/systems/v2/tapis.execution.system"
 },
 "storageSystem": {
 "href": "https://api.tacc.utexas.edu/systems/v2/docking.storage"
 },
 "history": {
 "href": "https://api.tacc.utexas.edu/apps/v2/tapis.app.imageclassify-1.0u3/history"
 },
 "metadata": {
 "href": "https://api.tacc.utexas.edu/meta/v2/data/?q=%7B%22associationIds%22%3A%223162334876895875561-242ac119-0001-005%22%7D"
 },
 "owner": {
 "href": "https://api.tacc.utexas.edu/profiles/v2/cicsvc"
 },
 "permissions": {
 "href": "https://api.tacc.utexas.edu/apps/v2/tapis.app.imageclassify-1.0u3/pems"
 }
 }
}

Important Application Sections

Metadata: The metadata of the app json includes information about the app
availability, runtime resources required, description, and much more. Some key
information in the metadata section includes the identity of the HPC system
(executionSystem) on which the app runs. In the above case, it is
tapis.execution.system. Also, the shortDescription of the above app
suggests that the function is to classify an image using a small ImageNet model.

Inputs: The above app does not contain any inputs. This section is used to
describe required data and/or folders for running the app. Any files or folders
specified in the inputs section will be staged to the execution system prior to
running.

Parameters: This section describes important information, typically command
line options, for running the app. The above app requires two parameters - a URL
pointing to an image for the classifier, and the number of predictions that it
should return.

Outputs: The above app does not define any outputs. This section may be used
to specify expected output file or folder names, counts, and ontologies. While
this feature is still under development, it can be used to aid in chaining apps
together by providing the output of an app as input into a different app.

More information on each of these sections and understanding Tapis apps can be
found in the
Tapis Documentation [https://tacc-cloud.readthedocs.io/projects/agave/en/latest/agave/guides/apps/introduction.html].

Prepare and Submit a Job

Continuing with the previous example of the Image Classifier app (see
Find an Application), we know there are two
parameters we need to specify: a URL pointing to an image for the classifier,
and the number of predictions the app should return.

Build a Job Template File

To run an instance of this application (called a “job”), we first must assemble
a json description of the job we would like to run. The simplest way to do this
is to use the tapis jobs init command:

$ tapis jobs init tapis.app.imageclassify-1.0u3

{
 "name": "tapis.app.imageclassify-job-1585230186004",
 "appId": "tapis.app.imageclassify-1.0u3",
 "batchQueue": "normal",
 "maxRunTime": "01:00:00",
 "memoryPerNode": "1GB",
 "nodeCount": 1,
 "processorsPerNode": 1,
 "archive": true,
 "inputs": {},
 "parameters": {
 "imagefile": "https://texassports.com/images/2015/10/16/bevo_1000.jpg",
 "predictions": 5
 },
 "notifications": [
 {
 "event": "*",
 "persistent": true,
 "url": "taccuser@gmail.com"
 }
]

The only option given to the command is the name of the app. The output is a
json template for submitting a job against the app. Metadata include a name
for the job (which can be changed), the appId, and other runtime options.
There are also the two parameters we expect filled with default options.

The only change we want to set now is "archive": false (see below for
details on archiving jobs), and we also need to redirect this json into a file
in order to submit a job. Execute:

$ tapis jobs init --no-archive --output job.json tapis.app.imageclassify-1.0u3

Tip

Use tapis jobs init --help to see further options

Submit a Job

Once you are satisfied that job.json contains the desired content, use the
tapis jobs submit command to run an instance of this job:

$ tapis jobs submit -F job.json
+--------+---+
| Field | Value |
+--------+---+
id	f0cb69a1-63a4-4970-9921-843968e66723-007
name	tapis.app.imageclassify-job-1589290511905
status	ACCEPTED
+--------+---+

An ACCEPTED status indicates the job.json was valid, and e-mail alerts (if they
were specified in job.json) will track the progress of the job. Also take note
of the long hexadecimal id when you submit the job. This identifier can be
used to track progress and download results.

Note

If you are receiving too many e-mail alerts, try changing the job.json to
only send an alert on "event": "FINISHED"

Track a Job

The Tapis CLI offers several commands to find and track the progress of jobs. If
you know the specific job ID you are looking for, that can usually be passed to
one of the jobs commands. Otherwise, you can list all jobs and find what you are
looking for based on the name of the job and how recently it was run:

List all jobs you have run
$ tapis jobs list
+--+---+----------+
| id | name | status |
+--+---+----------+
| f0cb69a1-63a4-4970-9921-843968e66723-007 | tapis.app.imageclassify-job-1589290511905 | FINISHED |
+--+---+----------+

List the status of a specific job
$ tapis jobs status f0cb69a1-63a4-4970-9921-843968e66723-007
+--------+---+
| Field | Value |
+--------+---+
id	f0cb69a1-63a4-4970-9921-843968e66723-007
name	tapis.app.imageclassify-job-1589290511905
status	FINISHED
+--------+---+

List the history of a specific job
$ tapis jobs history f0cb69a1-63a4-4970-9921-843968e66723-007
+-------------------+---------------+---+
| status | created | description |
+-------------------+---------------+---+
PENDING	3 minutes ago	Job processing beginning
PROCESSING_INPUTS	3 minutes ago	Identifying input files for staging
STAGED	3 minutes ago	Job inputs staged to execution system
STAGING_JOB	3 minutes ago	Staging runtime assets to execution system
STAGING_JOB	3 minutes ago	Fetching application assets from agave://docking.storage//home/docking/api/v2/prod/apps/tapis.app.imageclassify-1.0u3.zip
STAGING_JOB	3 minutes ago	Staging runtime assets to agave://tapis.execution.system//home/demo/scratch/taccuser/job-f0cb69a1-63a4-4970-9921-843968e66723-007-tapis-app-imageclassify-job-1589290511905
SUBMITTING	2 minutes ago	Submitting job to execution system
QUEUED	2 minutes ago	Job queued to execution system queue
RUNNING	2 minutes ago	Job running on execution system
CLEANING_UP	a minute ago	Job completed execution
FINISHED	a minute ago	Job completed successfully
+-------------------+---------------+---+

Download the Results

Once the job status is FINISHED, you can list what output is available:

$ tapis jobs outputs list f0cb69a1-63a4-4970-9921-843968e66723-007
+--+---------------+-----------+
| name | lastModified | length |
+--+---------------+-----------+
classifier_img.sif	3 minutes ago	379068416
image.jpg	3 minutes ago	116625
predictions.txt	2 minutes ago	498600
tapis-app-imageclassify-job-1589290511905.err	2 minutes ago	866
tapis-app-imageclassify-job-1589290511905.ipcexe	3 minutes ago	2353
tapis-app-imageclassify-job-1589290511905.out	3 minutes ago	0
tapis-app-imageclassify-job-1589290511905.pid	3 minutes ago	6
test	3 minutes ago	21
wrapper.sh	3 minutes ago	196
+--+---------------+-----------+

For this app, there are several assets available to download. The important
output is the predictions.txt file. You can choose to download all of the assets
as a bundle, or a single file:

Download a single file
$ tapis jobs outputs download f0cb69a1-63a4-4970-9921-843968e66723-007 predictions.txt
+-------------+-------+
| Field | Value |
+-------------+-------+
downloaded	1
skipped	0
messages	0
elapsed_sec	3
+-------------+-------+

 # Download all outputs
 $ tapis jobs outputs download --progress f0cb69a1-63a4-4970-9921-843968e66723-007
 Walking remote resource...
 Found 11 file(s) in 2s
 Downloading .agave.archive...
 Downloading .agave.log...
 Downloading classifier_img.sif...
 Downloading image.jpg...
 Downloading predictions.txt...
 Downloading tapis-app-imageclassify-job-1589290511905.err...
 Downloading tapis-app-imageclassify-job-1589290511905.ipcexe...
 Downloading tapis-app-imageclassify-job-1589290511905.out...
 Downloading tapis-app-imageclassify-job-1589290511905.pid...
 Downloading test.sh...
 Downloading wrapper.sh...
 Downloaded 11 files in 176s
 +-------------+-------+
 | Field | Value |
 +-------------+-------+
downloaded	11
skipped	0
messages	0
elapsed_sec	178
 +-------------+-------+

Note

The --progress flag prints progress of the download to STDOUT

Job Archives

Job archiving can either be set to true or false. If false, then the job outputs
will remain in the execution folder created for your job. This may be on a
scratch file system with a purge policy, so the outputs may be available for
only a limited time through the jobs service. This can be useful when a job
generates intermediate files that are not needed with the final output. To set
archive mode to false, the following line should appear in your job.json file:

If job archiving is set to true, then the job outputs are written to a storage
system and path that you specify, and will always be available through the jobs
service. Use the following lines in your job.json file:

If you omit the name of the archive path, it will choose a default path on your
storage system with the job identifier in the path name (recommended).

Create a Private System

Many tenants automatically provide their users with private storage and
execution systems connecting to TACC resources, but some do not. This guide
walks through the process of creating your own private systems. This can also
be used to help you connect to non-TACC lab servers, cloud VMs, and clusters.

Gather Relevant Information

To register any system in Tapis, you need the hostname and login credentials.
The preferred login credentials are username and SSH key pairs. Storage systems
(for storing files) require a default path where you have write access.
Execution systems (for running jobs) also require a default path where job
runtime files will be staged and the job will be executed. If it is an ‘HPC’
type execution system, then you also need information about the queueing system
(queue names, limits, etc.).

For this demonstration, we will set up a storage system to access the TACC work
directory (via Stampede2):

hostname: stampede2.tacc.utexas.edu
username: taccuser
credentials: <ssh keys>
storage path: /work/01234/taccuser

And we will set up an execution system for the Stampede2 HPC cluster:

hostname: stampede2.tacc.utexas.edu
username: taccuser
credentials: <ssh keys preferred>
storage path: /work/01234/taccuser
job runtime path: /scratch/01234/taccuser
queue_type: SLURM
queue: normal (limits in Stampede2 user guide)

Note

This guide assumes you have the appropriate permissions and credentials to
access Stampede2. These can be attained by having an active
Stampede2 Allocation [https://portal.tacc.utexas.edu/allocations-overview]

Register a Storage System

To register a system, you need to assemble a json description of the above
requirements and some additional metadata. Start by saving the following storage
system template in a file called tacc.work.taccuser.json:

{
 "id": "tacc.work.taccuser",
 "name": "Storage system for the TACC WORK directory",
 "description": "Storage system for the TACC WORK directory via Stampede2",
 "type": "STORAGE",
 "storage": {
 "host": "stampede2.tacc.utexas.edu",
 "port": 22,
 "protocol": "SFTP",
 "rootDir": "/work/01234/taccuser",
 "homeDir": "/",
 "auth":{
 "username":"taccuser",
 "publicKey": " <enter public key here> ",
 "privateKey": " <enter private key here> ",
 "type": "SSHKEYS"
 }
 }
}

Most fields are fairly self explanatory, but here is a brief breakdown of the
important options:

	id: a unique identifier and how the system name appears for tapis systems list commands

	name: common display name for the system

	description: optional long plain text description of the system

	type: can be STORAGE or EXECUTION

	host: IP address or hostname of system

	rootDir: path of the virtual root directory on the remote system

	homeDir: path relative to rootDir for tapis files - operations

	username: this is your username for the target system

	publicKey: cut and paste your public key here

	privateKey: cut and paste your private key here

Edit the username and paths in the above template to match your username and
work folder. A copy of your public key should be added to the
~/.ssh/authorized_keys file on the remote host. The public and private
key should be pasted on one line each similar to the following. Replace the
line breaks in the private key with the newline character \n:

{
 "auth":{
 "username": "taccuser",
 "publicKey": "ssh-rsa AAAAB3NzaC1yc2EBBAADAQABMQRgQqSuJdTi+VwMif8qouSSEWVduKZHpzOnS1zlknAyYXmQQFcaJ+vNAQayVMTqv+A+1lzxppTdgZ0Dn42EOYWRa6B/IEMPzDuKb7F0qNFiH9m+OZJDYdIWS1rlN1oK32jHUi0xV8kM3KOLf2TIjDBUyZRpMGyQ= user@email.com",
 "privateKey": "-----BEGIN RSA PRIVATE KEY-----\nMIIEpAIBAAKCAQEA1Jhi5BNiogg3NtALJepyTz5xS3j/dpYBGf5ERBH0C\n4SCb9VAxOCyb4l+QDrOQnLRX2RV4JjHlw7r8qmc6IvPmk83oTYqYN2NuzMjxI\nsqjVfmJgnF4sPuQy+Pioie9UeekAJRfaJLChZxLfyfppUVNTOOg6rVkERV/n9IDr\nTY2r/B16XtzcjGYvhW35Avy2FlTHvJldwaxmY4UuNey7r9LXAved4nqTj7d\n5PVKgWB8Bu6h5U1EGgnPhFFi8MJCO4/bByqAYdEffC9Y+cWBFq749XNPafid\nDlKFza44RR5Fg86OZxJW7NGoMnIjVYRIcUQIDAQABAoIBAQCovogIBscMW6R/\nfTwM/h3OlUu9EdlVOfygwkq5GfdbPBco291UOmDwN08aryTR8JtVLPO5ZtevX\nTVXVpWtejdLr5aL/R/uYxhxaIoeI7ppQBk3daSNsZia2lRp1j4qil\nyKfy5WxHdzjAhg3gamYtTk981qJIOSR0kQxxz3ax23BN5C/r1uqHK1hFUlCgx\nRrjt2M2/TvFtGZdRmxH4Kdco7IeOtj0xAYS/hGBV4CRa+4zWb3ikNOVxcFL61\nuT/60043DsVI22B5zv3XODtfSjquqlYl5eHZdf+HdL6u91CKrjmvpg80OfQ\ngmPwhOjdAoGBAOtRhXta/Y8X1U+XykaXfVFsfzFsslMtI73XII+nKYdtDFlSl\nLYg6PB5Gk9Q++RdinHzL7DwAXOVWW2nwfoEKxjsYCw4ihYVO/UEG\nqqCeu0X/r9N6u78HfeZEX5XH3+QtR/d9bP2mLjhY8LTAoGBAOdH\nnHnrMpeiEzou+5UC3lKRUN84LX/o9kp6t6WSF5oT7tQEyJKVICgLBOMVbASvXZxncYziYJKIzrqDkC+QXdZpF0x/u04vryDz9ySl9rhBYaD74e+FFXkDImMAQ\nCL1InIelCmXcWsORJd+5yCGOSS3TL2lA+1YXLAoGf47hMm/uT0HvzVhDq7\nD+764ZgRHjN8tpn9N0hz/Gj0zaw+9lOXEXG1DnlGzo016sAOc+2tFZx\n3j8w9cZQJ0zTE2u7Lz8CL9yKXicsOgFhdeyrF4AwtJ2CLtZF383wim2QFi4/Ypkl\nL4lsYnJYnJjQCKgA6bROu0+rA1TUvCzXHbgH7t6eYRcZeKnJNZ+m3PhBs+8W\nov4nLLTz8Q7GN8g6T1//QojS8y ZR9GAr0Z0BbtW8om+fVehPFAMm8x6tS4sTFl0\nUp+i0r4VF7PnvfSIC+AHJUe+a4XPmmphVsnxEpsS+tQ2yUh7Akmt\np8WOECgYAJuaT+FBqIWhvmaymOjUFfQug67+lv7w3qzzWQAq8DyTweFNJ4E\nIbE1RnT86V2xhPr3YgjmRyyONlb/Xr8fZrz8KpmSehT99a+QY6gkIoWrfQ5xS7g6\nI/GDX2x54eANWX0xXKMQXfTU+WN6s5WPl/BL+/Cj43Hfg==\n-----END RSA PRIVATE KEY-----",
 "type": "SSHKEYS"
 }
}

Warning

Remember, never share this json file because it contains a plain text copy of
your private key.

You will need to keep a copy of this file to edit the storage system in the
future. To register this system with Tapis, use the following command:

$ tapis systems create -F tacc.work.taccuser.json
+----------------------+--+
| Field | Value |
+----------------------+--+
id	tacc.work.taccuser
name	Storage system for TACC work directory
type	STORAGE
default	False
available	True
description	Storage system for TACC work directory via Stampede2
executionType	None
globalDefault	False
lastModified	just now
maxSystemJobs	None
maxSystemJobsPerUser	None
owner	taccuser
public	False
revision	1
scheduler	None
scratchDir	None
site	None
status	UP
uuid	383424038079107562-242ac112-0001-006
workDir	None
+----------------------+--+

Confirm that it worked by searching for the storage system and listing files
in the root directory:

$ tapis systems search --id eq tacc.work.taccuser
+--------------------+--+---------+---------+
| id | name | type | default |
+--------------------+--+---------+---------+
| tacc.work.taccuser | Storage system for TACC work directory | STORAGE | False |
+--------------------+--+---------+---------+

$ tapis files list agave://tacc.work.taccuser/
+-----------+--------------+--------+
| name | lastModified | length |
+-----------+--------------+--------+
jobs	2 years ago	4096
maverick	2 years ago	4096
stampede2	2 years ago	4096
wrangler	2 years ago	4096
+-----------+--------------+--------+

Register an Execution System

An execution system contains many of the same fields as a storage system, but it
is a bit more involved. Save the following template for a Stampede2 execution
system into a file called tacc.stampede2.taccuser:

{
 "id": "tacc.stampede2.taccuser",
 "name": "Execution system for TACC Stampede2",
 "description": "Execution system for TACC Stampede2",
 "type": "EXECUTION",
 "executionType": "HPC",
 "scheduler": "SLURM",
 "maxSystemJobsPerUser": 50,
 "scratchDir": "/scratch/01234/taccuser",
 "login": {
 "host": "stampede2.tacc.utexas.edu",
 "port": 22,
 "protocol": "SSH",
 "auth": {
 "username": "taccuser",
 "publicKey": " <enter public key here> ",
 "privateKey": " <enter private key here> ",
 "type": "SSHKEYS"
 }
 },
 "storage": {
 "host": "stampede2.tacc.utexas.edu",
 "port": 22,
 "protocol": "SFTP",
 "rootDir": "/",
 "homeDir": "/work/01234/taccuser",
 "auth": {
 "username": "taccuser",
 "publicKey": " <enter public key here> ",
 "privateKey": " <enter private key here> ",
 "type": "SSHKEYS"
 }
 },
 "queues": [
 {
 "name": "normal",
 "maxProcessorsPerNode": 68,
 "maxMemoryPerNode": "96GB",
 "maxNodes": 256,
 "maxRequestedTime": "48:00:00",
 "customDirectives": "-A <enter allocation name here>",
 "default": true
 }
]
}

Some of the new or changed fields in this execution system include:

	type: execution system rather than storage system

	executionType: HPC indicates a cluster with a job scheduler

	scheduler: Stampede2 uses a SLURM scheduler

	maxSystemJobsPerUser: maximum concurrent jobs on the system per user

	scratchDir: path for job working directory at runtime, relative to rootDir

	login: similar to storage, host and credential information

	queues: an array of batch queue definitions for the HPC system

For this execution system, there are two locations to cut and paste your SSH
keys. Again, because keys will be stored in plain text in this file, do not
share this file with anyone and keep it secure. In addition, the queues
parameter has an option called customDirectives which should contain the
name of an allocation you have access to on Stampede2. And finally, as before,
make sure to change the username and paths to match your account on the HPC
system.

Once the appropriate changes have been made to the json file, register the
system with Tapis using the following command:

$ tapis systems create -F tacc.stampede2.taccuser.json
+----------------------+---------------------------------------+
| Field | Value |
+----------------------+---------------------------------------+
id	tacc.stampede2.taccuser
name	Execution system for TACC Stampede2
type	EXECUTION
default	False
available	True
description	Execution system for TACC Stampede2
executionType	HPC
globalDefault	False
lastModified	just now
maxSystemJobs	2147483647
maxSystemJobsPerUser	50
owner	taccuser
public	False
revision	1
scheduler	SLURM
scratchDir	/scratch/01234/taccuser/
site	None
status	UP
uuid	4903282542648684054-242ac112-0001-006
workDir	
+----------------------+---------------------------------------+

Finally, confirm that the system exists by searching for it then listing the
available queues:

Search for your private systems
$ tapis systems search --public eq false
+-------------------------+--+-----------+---------+
| id | name | type | default |
+-------------------------+--+-----------+---------+
| tacc.stampede2.taccuser | Execution system for TACC Stampede2 | EXECUTION | False |
| tacc.work.taccuser | Storage system for TACC work directory | STORAGE | False |
+-------------------------+--+-----------+---------+

List queues on the execution system
$ tapis systems queues list -f json tacc.stampede2.taccuser
[
 {
 "name": "normal",
 "description": null,
 "default": true,
 "maxUserJobs": -1,
 "maxRequestedTime": "48:00:00"
 }
]

Additional Help

Further information about creating storage and execution systems, including full
descriptions of the parameters above as well as other optional parameters, can
be found in the
Tapis platform documentation [https://tacc-cloud.readthedocs.io/en/latest/]

Modify an Existing System

Tapis system definitions (written in json file format) can be added to a
tenant using the command line interface. To modify a system after it has been
added, you must edit the original json file and use the CLI to submit the
change.

Modify a Storage System

In a
previous section
of this user guide, we registered a new storage system called
tacc.work.taccuser using the following json, which was stored in a file
called tacc.work.taccuser.json:

{
 "id": "tacc.work.taccuser",
 "name": "Storage system for the TACC WORK directory",
 "description": "Storage system for the TACC WORK directory via Stampede2",
 "type": "STORAGE",
 "storage": {
 "host": "stampede2.tacc.utexas.edu",
 "port": 22,
 "protocol": "SFTP",
 "rootDir": "/work/01234/taccuser",
 "homeDir": "/",
 "auth":{
 "username":"taccuser",
 "publicKey": " <enter public key here> ",
 "privateKey": " <enter private key here> ",
 "type": "SSHKEYS"
 }
 }
}

If you need to change the hostname, paths, ssh keys, or any other field (other
than the id, which is immutable), the appropriate method would be to edit
the above file to reflect the change, then use the Tapis CLI to edit the
existing storage system. For the purposes of this example, we may want to change
the plain text name parameter to include more detail. Modify the json file
and submit the changes as follows:

$ tapis systems update -F tacc.work.taccuser.json tacc.work.taccuser
+----------------------+--+
| Field | Value |
+----------------------+--+
id	tacc.work.taccuser
name	Storage system for the TACC work directory via Stampede2
type	STORAGE
default	False
available	True
description	Storage system for the TACC WORK directory via Stampede2
executionType	None
globalDefault	False
lastModified	just now
maxSystemJobs	None
maxSystemJobsPerUser	None
owner	taccuser
public	False
revision	2
scheduler	None
scratchDir	None
site	None
status	UP
uuid	383424038079107562-242ac112-0001-006
workDir	None
+----------------------+--+

The plain text response should include the new value for the name parameter.
You can also use the tapis systems history command to check that the update
was accepted:

$ tapis systems history tacc.work.taccuser
+-------------+----------------------+---+
| status | created | description |
+-------------+----------------------+---+
CREATED	2020-05-12T04:57:03Z	This system was created
ROLES_GRANT	2020-05-12T13:16:48Z	User jdoe was granted the role of GUEST by taccuser
UPDATED	2020-05-12T14:09:18Z	This system was updated
+-------------+----------------------+---+

Modify an Execution System

In a
previous section
we registered a new execution system for the Stampede2 HPC cluster. In our
system description, we only included one queue (normal), although Stampede2
has many more queues available. To add an additional queue, return to the
original json file called tacc.stampede2.taccuser.json and add another json
object to the queue array:

Save that new file and update the existing system with the following:

$ tapis systems update -F tacc.stampede2.taccuser.json tacc.stampede2.taccuser
+----------------------+---------------------------------------+
| Field | Value |
+----------------------+---------------------------------------+
available	True
default	False
description	Execution system for TACC Stampede2
executionType	HPC
globalDefault	False
id	tacc.stampede2.taccuser
lastModified	just now
maxSystemJobs	2147483647
maxSystemJobsPerUser	50
name	Execution system for TACC Stampede2
owner	taccuser
public	False
revision	2
scheduler	SLURM
scratchDir	/scratch/01234/taccuser/
site	None
status	UP
type	EXECUTION
uuid	5042654862881657322-242ac113-0001-006
workDir	
+----------------------+---------------------------------------+

$ tapis systems queues list tacc.stampede2.taccuser
+------------+-------------+---------+-------------+------------------+
| name | description | default | maxUserJobs | maxRequestedTime |
+------------+-------------+---------+-------------+------------------+
| skx-normal | None | True | -1 | 48:00:00 |
| normal | None | False | -1 | 48:00:00 |
+------------+-------------+---------+-------------+------------------+

Create a Custom App

You can find Tapis applications (“apps”) in your tenant’s catalog by using the
tapis apps list command described
previously.
If the app you are looking for is not available, you can create your own and add
it to the catalog.

Components of an App

The essential components you need to create your own app are:

	An app bundle directory containing definitions and assets for the app

	A Docker image containing the executable and all runtime dependencies

	A wrapper script (written in bash) that runs the executable

Create an App by Example

The best way to demonstrate the creation of a custom app is by example. The
following sub-pages will go through the process:

	Initialize the App Directory

	Containerize the Executable

	Deploy and Test the App

	Best Practices and Next Steps

Initialize the App Directory

At the core of a Tapis app is an executable. Going in to the app building
process, it is generally assumed that the developer has an executable in mind
and the knowledge to run an instance of the executable with given inputs and /
or parameters. In this example, we will create an app for the
FastQC [https://www.bioinformatics.babraham.ac.uk/projects/fastqc/]
tool. FastQC is a publicly-available quality control tool for raw next-gen
sequencing data.

Structure of an App

To begin, run the command tapis apps init and give an arbitrary name for a
test app:

$ tapis apps init test_app
+-------+--------------------------------+
| stage | message |
+-------+--------------------------------+
setup	Project name: test_app
setup	Safened project name: test_app
setup	Project path: ./test_app
clone	Project path: ./test_app
+-------+--------------------------------+

This will create a new template app folder (in this case, called
test_app/) with the following form:

$ tree test_app/
test_app/
├── Dockerfile
├── app.json
├── assets
│ ├── lib
│ │ ├── VERSION
│ │ └── container_exec.sh
│ ├── runner.sh
│ └── tester.sh
├── job.json
└── project.ini

Several files and folders are created automatically. It is a good idea to take
some time now to look through the directory tree and examine the contents of
each file. A brief summary of the files are as follows:

	Dockerfile: a Dockerfile for the app runtime

	app.json: json file describing the app metadata, inputs, parameters, and outputs

	VERSION: version file containing the image tag

	container_exec.sh: utility script for executing a container on a TACC HPC system

	runner.sh: main run script for the app; takes input and parameters from app.json

	tester.sh: legacy script that may be used to run a local test

	job.json: template for a job json file specific to this app

	project.ini: initialization parameters for the app which are injected in to app.json

Initialize the FastQC App

Use the tapis apps init command again, but this time provide additional
flags to indicate the name and version of the app:

$ tapis apps init --app-label fastqc --app-description "FastQC app" --app-version 0.11.9 fastqc_app
+-------+----------------------------------+
| stage | message |
+-------+----------------------------------+
setup	Project name: fastqc_app
setup	Project description: FastQC app
setup	Project version: 0.11.9
setup	Safened project name: fastqc_app
setup	Project path: ./fastqc_app
clone	Project path: ./fastqc_app
+-------+----------------------------------+

$ tree fastqc_app/
fastqc_app/
├── Dockerfile
├── app.json
├── assets
│ ├── lib
│ │ ├── VERSION
│ │ └── container_exec.sh
│ ├── runner.sh
│ └── tester.sh
├── job.json
└── project.ini

From here on, we will refer to the location of this app bundle as
~/fastqc_app/. In the next sections, we will go through the template files
one by one to customize them for this particular app.

~/fastqc_app/project.ini

The first file to examine is called project.ini, which contains
initialization parameters for the app. By default, the fields are populated by
some of the flags specified on the command line or picked up from the
environment:

[app]
name = fastqc_app
label = fastqc_app
description = FastQC app
version = 0.11.9
; bundle = assets
; deployment_path =
deployment_system = tacc.work.taccuser
execution_system = tacc.stampede2.taccuser

[docker]
dockerfile = Dockerfile
namespace = taccuser
repo = fastqc_app
tag = 0.11.9

[env]

[git]
branch = master
; remote =

[grants]
; read =
; execute =
; update =

[job]

The parameters listed above will be interpreted and injected into the app when
you deploy it. We need to make some changes to the data above. Set the
following:

deployment_system = tacc.work.taccuser
execution_system = tacc.stampede2.taccuser

These should be the names of your private storage and execution systems,
respectively.

~/fastqc_app/app.json

This is a templated app json file. By default, it will grab the app name,
version, executionSystem, deploymentSystem, and other parameters from
your project.ini. Now is a good time to modify this file if a typical job
run against this app would require, e.g., more than one node or a non standard
queue. The jinja2-formatted fields surrounded by double curly braces {{ }}
are take from app.ini.

Specific to FastQC, one input is required - a fastq file. Modify app.json
to expect one input fastq file as shown below:

{
 "checkpointable": false,
 "name": "{{ username }}-{{ app.name }}",
 "executionSystem": "{{ app.execution_system }}",
 "executionType": "HPC",
 "deploymentPath": "{{ username }}/apps/{{ app.name }}-{{ app.version }}",
 "deploymentSystem": "{{ app.deployment_system }}",
 "helpURI": "",
 "label": "{{ app.label }}",
 "shortDescription": "{{ app.description }}",
 "longDescription": "",
 "modules": [
 "load tacc-singularity"
],
 "ontology": [],
 "parallelism": "SERIAL",
 "tags": [],
 "templatePath": "runner.sh",
 "testPath": "tester.sh",
 "version": "{{ app.version }}",
 "defaultMaxRunTime": "00:30:00",
 "inputs":[
 {
 "id": "fastq",
 "value": {
 "default": "",
 "visible": true,
 "required": true
 },
 "semantics": {
 "ontology": [
 "http://edamontology.org/format_1930"
]
 },
 "details": {
 "label": "FASTQ sequence file"
 }
 }
],
 "parameters": [
 {
 "id": "CONTAINER_IMAGE",
 "value": {
 "default": "{{ docker.namespace }}/{{ docker.repo }}:{{ docker.tag }}",
 "type": "string",
 "visible": false,
 "required": true,
 "order": 1000
 }
 }
],
 "outputs": []
}

Please refer back to the previous
App Documentation
for a detailed breakdown of a typical app json file.

~/fastqc_app/job.json

The job.json file contains minimal information. The only change needed at
this time is to add the expect input:

{
 "name": "{{ app.name }}-test-{{ iso8601_basic_short }}",
 "appId": "{{ app.name }}-{{ app.version}}",
 "archive": false,
 "inputs": {
 "fastq": ""
 },
 "parameters": {}
}

Next Steps

If you have been following along, these files are ready to deploy for your app:

fastqc_app/
├── Dockerfile
├── app.json # Done
├── assets
│ ├── lib
│ │ ├── VERSION
│ │ └── container_exec.sh # Do not modify
│ ├── runner.sh
│ └── tester.sh # Do not modify
├── job.json # Done
└── project.ini # Done

Next, we will build the Dockerfile and runner.sh.

Containerize the Executable

If an image of your executable already exists, and was created by a trusted
source, consider using that rather than building your own. You may find existing
images on hubs such as
Docker Hub [https://hub.docker.com/],
BioContainers [https://biocontainers.pro/],
or
Quay.io [https://quay.io/].

This tutorial is a quick and dirty summary of how to build your own Docker image
as if there is not one available for your executable. This is not meant to
replace the full
Docker documentation [https://docs.docker.com/develop/].

We will continue with the example of FastQC from the
previous page.

Choose a Source Image

Prerequisite: You should have a
Docker ID [https://hub.docker.com]
and docker should be installed on your local machine.

The only dependency for
FastQC [https://www.bioinformatics.babraham.ac.uk/projects/fastqc/]
is a reasonably recent Java Runtime Environment. Thus, most modern Linux OS-es
should suffice. The TACC Docker hub organization provides a few base images that
would work for this. Pull one manually now so it is in your environment:

$ docker pull tacc/tacc-ubuntu18-mvapich2.3-psm2

A list of available base images can be found
here [https://github.com/TACC/tacc-containers].

Also, now is a good time to prepare a src/ directory in the application
bundle. If your code is a python script, for example, this is where you want to
put it. This directory is not necessary, but nice to have if you want to keep
your executable together with the app assets:

$ cd ~/fastqc-app/
$ mkdir src/

Install and Test Interactively

The installation process for fastqc is extremely simple. It is good practice
to test the installation interactively, and record the steps for a Dockerfile:

Start an interactive docker session
$ docker run --rm -it tacc/tacc-ubuntu18-mvapich2.3-psm2

Update and install necessary packages
[docker] $ apt-get update
[docker] $ apt-get upgrade -y
[docker] $ apt-get install wget -y
[docker] $ apt-get install zip -y
[docker] $ apt-get install default-jre -y

Install FastQC
[docker] $ wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.9.zip
[docker] $ unzip fastqc_v0.11.9.zip
[docker] $ rm fastqc_v0.11.9.zip
[docker] $ chmod +x /FastQC/fastqc

After a bit of trial and error, the commands above are a reasonably short path
to installing the fastqc executable. You can test it from within the docker
image to make sure it is working by, for example:

[docker] $ /FastQC/fastqc -h

 FastQC - A high throughput sequence QC analysis tool

SYNOPSIS

 fastqc seqfile1 seqfile2 .. seqfileN

 fastqc [-o output dir] [--(no)extract] [-f fastq|bam|sam]
 [-c contaminant file] seqfile1 .. seqfileN
... etc.

Note on Source Code and Mounting Directories

In this instance, we could have downloaded the source zip file for FastQC
directly to the src/ directory of our app bundle, then mounted that directory
within the image, e.g.:

$ cd ~/fastqc-app/src/
$ wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.9.zip
$ docker run --rm -it -v $PWD:/opt/src tacc/tacc-ubuntu18-mvapich2.3-psm2
... etc.

That route is perfectly reasonable and can be followed here. In fact, if your
app is a standalone python script, for example, this is the best method for
including it in your Docker image.

However, some packages have very large zip or tar.gz files (100s of MB), and
would be cumbersome to keep in this fastqc app bundle folder. It is up to the
app developer to find the balance between completeness of source files and
responsible disk usage.

Here, we decide to not download the source permanently. Instead, we make a
record of where the source came from. For example:

$ cd ~/fastqc-app/src/
$ echo "Source: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.9.zip" \
 >> README.md

Write the Dockerfile

Next, translate the steps required to install your software package into a
resonable Dockerfile. The Dockerfile should be located at the root
directory, ~/fastqc-app/Dockerfile:

FROM tacc/tacc-ubuntu18-mvapich2.3-psm2

RUN apt-get update \
 && apt-get upgrade -y \
 && apt-get install wget -y \
 && apt-get install zip -y \
 && apt-get install default-jre -y

RUN wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.9.zip \
 && unzip fastqc_v0.11.9.zip \
 && rm fastqc_v0.11.9.zip \
 && chmod +x FastQC/fastqc

ENV PATH "/FastQC/:$PATH"

Build and Test the Image

Navigate to the top of the app directory, ~/fastqc-app/, and the command to
build a new Docker image is:

$ docker build -f Dockerfile --force-rm -t taccuser/fastqc:0.11.9 ./

Once built, test the new image with an example command:

$ docker run --rm fastqc:0.11.9 fastqc -h
- or -
$ docker run --rm fastqc:0.11.9 perl /FastQC/fastqc -h

Note

Calling the complete path to executables is sometimes safer than relying on
PATH environment variables

If you see the FastQC help text, the installation likely was successful. At this
time, it might be prudent to test with real data as well. Download some test
data into a ~/fastqc-app/tests/ directory:

$ cd ~/fastqc-app/
$ mkdir tests/

Download random sample data or provide your own
wget https://molb7621.github.io/workshop/_downloads/SP1.fq

Next, run the FastQC pipeline on the example data:

$ docker run -v $PWD:/data fastqc:0.11.9 perl /FastQC/fastqc /data/SP1.fq

If successful, you should find the output files SP1_fastqc.html and
SP1_fastqc.zip in the ~/fastqc-app/tests/ directory.

Push Your Image to the Cloud

If you are happy with the tests, push your Docker image to a publicly available
repository. It can be your own personal repository as long as it is set to
public, and not private. To push to your own repository, make sure it was
namespaced with your Docker ID. Then:

$ docker push taccuser/fastqc:0.11.9

Assemble Run Commands

The final step is to put instructions in runner.sh on how the app should be
run. In general, these are the same commands we used for testing above.

Most of the lines in the default file should be left alone. See the last three
lines of this file for what should be added:

Allow over-ride
if [-z "${CONTAINER_IMAGE}"]
then
 version=$(cat ./_util/VERSION)
 CONTAINER_IMAGE="index.docker.io/taccuser/fastqc:${version}"
fi
. lib/container_exec.sh

Write an excution command below that will run a script or binary inside the
requested container, assuming that the current working directory is
mounted in the container as its WORKDIR. In place of 'docker run'
use 'container_exec' which will handle setup of the container on
a variety of host environments.
#
Here is a template:
#
container_exec ${CONTAINER_IMAGE} COMMAND OPTS INPUTS
#
Here is an example of counting words in local file 'poems.txt',
outputting to a file 'wc_out.txt'
#
container_exec ${CONTAINER_IMAGE} wc poems.txt > wc_out.txt
#

set -x

set +x

COMMAND="perl /FastQC/fastqc"
PARAMS="${fastq}"
container_exec ${CONTAINER_IMAGE} ${COMMAND} ${PARAMS}

Update the VERSION File

Finally, put the version / docker tag into the file located at
~/fastqc_app/assets/lib/VERSION:

$ echo "0.11.9" >> ~/fastqc_app/assets/lib/VERSION
$ cat ~/fastqc_app/assets/lib/VERSION
0.11.9

Deploy and Test the App

At this point, your app bundle directory structure should look similar to:

fastqc_app/
├── Dockerfile # Done
├── app.json # Done
├── assets
│ ├── lib
│ │ ├── VERSION # Done
│ │ └── container_exec.sh # Do not modify
│ ├── runner.sh # Done
│ └── tester.sh # Do not modify
├── job.json # Done
├── project.ini # Done
├── src
│ └── mycode.py # Optional
└── test
 └── SP1.fq # Optional

The final steps are to deploy the app in to the catalog on the tenant, then run
a test job to confirm it is working.

Upload Test Data

The Tapis app takes FASTQ data as input. Now is a good time to upload some
sample data to a storage system.

Make a directory for test data
$ tapis files mkdir agave://tacc.work.taccuser/ test-data
+--------------+---------------------------------------+
| Field | Value |
+--------------+---------------------------------------+
name	test-data
uuid	1105399583769563626-242ac112-0001-002
owner	taccuser
path	/test-data
lastModified	2020-05-13T18:40:00.027-05:00
source	None
status	STAGING_COMPLETED
nativeFormat	dir
systemId	tacc.work.taccuser
+--------------+---------------------------------------+

Upload the SP1.fq file
$ tapis files upload agave://tacc.work.taccuser/test-data/ ./test/SP1.fq
+-------------------+----------+
| Field | Value |
+-------------------+----------+
uploaded	1
skipped	0
messages	0
bytes_transferred	21.94 kB
elapsed_sec	3
+-------------------+----------+

Confirm the file exists on the Tapis storage system
$ tapis files list agave://tacc.work.taccuser/test-data/
+--------+--------------+--------+
| name | lastModified | length |
+--------+--------------+--------+
| SP1.fq | 1 minute ago | 22471 |
+--------+--------------+--------+

The test data can be referenced in future calls to the app as:

agave://tacc.work.taccuser/test-data/SP1.fq

Deploy the App

The tapis apps deploy command does multiple things. First, it builds and
pushes your docker image to the namespace specified in project.ini. Second,
it uploads the app assets to a Tapis storage space specified by
deploymentSystem and deploymentPath in the app json file. Finally, it
registers the app with the tenant.

Navigate in to the app bundle folder and issue:

$ pwd
~/fastqc_app/

$ ls
Dockerfile app.json assets/ job.json
project.ini src/ test/

$ tapis apps deploy -W ./
+--------+---+
| stage | message |
+--------+---+
build	Step 1/4 : FROM tacc/tacc-ubuntu18-mvapich2.3-psm2
build	---> d554e642ddc5
build	Step 2/4 : RUN apt-get update && apt-get upgrade -y && apt-get install wget -y && apt-get install zip -y && apt-get install default-jre -y
build	---> Using cache
build	---> aa1f50856b62
build	Step 3/4 : RUN wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.9.zip && unzip fastqc_v0.11.9.zip && rm fastqc_v0.11.9.zip && chmod +x FastQC/fastqc
build	---> Using cache
build	---> 3bb6917b68d6
build	Step 4/4 : ENV PATH "/FastQC/:$PATH"
build	---> Using cache
build	---> 356927b0a8f6
build	Successfully built 356927b0a8f6
build	Successfully tagged taccuser/fastqc_app:0.11.9
push	The push refers to repository [docker.io/taccuser/fastqc_app]
push	0.11.9: digest: sha256:29eb2fdb1503fdd38ae311dabfc13958f0910253580614dba0d3ac2dd0753e41 size: 4085
upload	assets/runner.sh
upload	assets/tester.sh
upload	assets/lib/VERSION
upload	assets/lib/container_exec.sh
create	Created Tapis app fastqc_app-0.11.9 revision 1
+--------+---+

If all goes well, you should see a successful message at the end of the log
above, and you should see the new app listed in the apps catalog:

$ tapis apps search --name like fastqc
+----------------------------+----------+------------+------------------+----------+-------------------------+
| id | revision | label | shortDescription | isPublic | executionSystem |
+----------------------------+----------+------------+------------------+----------+-------------------------+
| taccuser-fastqc_app-0.11.9 | 2 | fastqc_app | FastQC app | False | tacc.stampede2.taccuser |
+----------------------------+----------+------------+------------------+----------+-------------------------+

Submit a Test Job

Submitting a test job has been
described previously
in this how-to guide. Here, testing will be performed in the same way. First,
create an appropriate job.json file.

$ tapis jobs init --no-archive --output fastqc_job.json taccuser-fastqc_app-0.11.9

Which will output the following json, which can be streamed into a file for
submission (add the highlighted test data line):

{
 "name": "taccuser-fastqc_app-job-1589377205989",
 "appId": "taccuser-fastqc_app-0.11.9",
 "batchQueue": "skx-normal",
 "maxRunTime": "01:00:00",
 "memoryPerNode": "1GB",
 "nodeCount": 1,
 "processorsPerNode": 1,
 "archive": false,
 "inputs": {
 "fastq": "agave://tacc.work.taccuser/test-data/SP1.fq"
 },
 "parameters": {},
 "notifications": [
 {
 "event": "FINISHED",
 "persistent": true,
 "url": "taccuser@gmail.com"
 },
 {
 "event": "FAILED",
 "persistent": true,
 "url": "taccuser@gmail.com"
 }
]
}

Then, submit the test job:

$ tapis jobs submit -F fastqc_job.json
+--------+--+
| Field | Value |
+--------+--+
id	4e972f77-5bf9-446e-87a2-3541c4ea5745-007
name	taccuser-fastqc_app-job-1589377205989
status	ACCEPTED
+--------+--+

Finally, when the job status is FINISHED, inspect and retrieve the output:

$ tapis jobs history 4e972f77-5bf9-446e-87a2-3541c4ea5745-007
+-------------------+----------------+--+
| status | created | description |
+-------------------+----------------+--+
PENDING	8 minutes ago	Job processing beginning
PROCESSING_INPUTS	8 minutes ago	Identifying input files for staging
STAGING_INPUTS	8 minutes ago	Transferring job input data to execution system
STAGING_INPUTS	8 minutes ago	Job input copy in progress: agave://tacc.work.taccuser/public/SP1.fq to agav
		e://tacc.stampede2.taccuser//scratch/05896/taccuser/taccuser/job-4e972f77-5b
		f9-446e-87a2-3541c4ea5745-007-taccuser-fastqc_app-job-1589377205989/SP1.fq
STAGED	8 minutes ago	Job inputs staged to execution system
STAGING_JOB	8 minutes ago	Staging runtime assets to execution system
STAGING_JOB	8 minutes ago	Fetching application assets from
		agave://tacc.work.taccuser/taccuser/apps/fastqc_app-0.11.9
STAGING_JOB	8 minutes ago	Staging runtime assets to agave://tacc.stampede2.taccuser//scratch/05896/sd2
		e0004/taccuser/job-4e972f77-5bf9-446e-87a2-3541c4ea5745-007-taccuser-fastqc_
		app-job-1589377205989
SUBMITTING	8 minutes ago	Submitting job to execution system
QUEUED	7 minutes ago	Job queued to execution system queue
RUNNING	3 minutes ago	Job running on execution system
CLEANING_UP	29 seconds ago	Job completed execution
FINISHED	29 seconds ago	Job completed successfully
+-------------------+----------------+--+

$ tapis jobs outputs list 4e972f77-5bf9-446e-87a2-3541c4ea5745-007
+--+-----------------+--------+
| name | lastModified | length |
+--+-----------------+--------+
SP1.fq	21 minutes ago	22471
SP1_fastqc.html	17 minutes ago	561767
SP1_fastqc.zip	17 minutes ago	420233
container_exec.log	17 minutes ago	19232
lib	17 minutes ago	4096
runner.sh	17 minutes ago	875
taccuser-fastqc_app-job-1589377205989-4e972f77-5bf9-446e-87a2-3541c4ea5745-007.err	21 minutes ago	372
taccuser-fastqc_app-job-1589377205989-4e972f77-5bf9-446e-87a2-3541c4ea5745-007.out	21 minutes ago	29
taccuser-fastqc_app-job-1589377205989.ipcexe	21 minutes ago	2772
tester.sh	21 minutes ago	44
+--+-----------------+--------+

$ tapis jobs outputs download 4e972f77-5bf9-446e-87a2-3541c4ea5745-007
Walking remote resource...
Found 13 file(s) in 5s
Downloading .agave.archive...
Downloading .agave.log...
Downloading container_exec.log...
Downloading container_exec.sh...
Downloading VERSION...
Downloading runner.sh...
Downloading taccuser-fastqc_app-job-1589377205989-4e972f77-5bf9-446e-87a2-3541c4ea5745-007.err...
Downloading taccuser-fastqc_app-job-1589377205989-4e972f77-5bf9-446e-87a2-3541c4ea5745-007.out...
Downloading taccuser-fastqc_app-job-1589377205989.ipcexe...
Downloading SP1.fq...
Downloading SP1_fastqc.html...
Downloading SP1_fastqc.zip...
Downloading tester.sh...
Downloaded 13 files in 61s
+-------------+-------+
| Field | Value |
+-------------+-------+
downloaded	13
skipped	0
messages	0
elapsed_sec	66
+-------------+-------+

If the file SP1_fastq.html exists, then the run was successful.

Best Practices and Next Steps

Congratulations! You built and deployed your own Tapis. Consider the following
recommended best practices when building app bundles, and share your work with
others in the following ways:

Best Practices for Developing Containerized App Bundles

The app development approach demonstrated here is meant to be flexible, in
that it can adapt to many different scientific applications and data sets, and
scalable, in that it can run efficiently on TACC peta-scale systems. Some
tips for the app developer in building new apps:

	Write a clean Dockerfile so there is no question of source code / version provenance. Minimize image size where possible by removing, e.g. source code tarballs and installation directories.

	Design a robust, but small and portable test case to package with the app bundle. Make liberal use of error checking in tester.sh and runner.sh.

	Use only command line arguments when calling the containerized executable (with the container_exec function). If the executable requires a configuration file, use a wrapper script inside the container to parse inputs from the command line and generate the appropriate configuration file.

	Explicitly declare all inputs, and explicitly write all outputs. This includes file name and full path.

	Package and curate outputs into a user-friendly format. Some use cases may benefit from a tarball of all output files; some use cases may benefit from individual files.

	Make output file names deterministic and predictable to facilitate scripting and job chaining.

	Document all expected outputs in the tester.sh and runner.sh wrapper scripts. Where appropriate, validate output and provide helpful error messaging.

	Share your Docker images and app bundles with the SD2E community to benefit others and elicit feedback.

Best practices were adapted from the
Computational Genomics Lab [https://toil.readthedocs.io/en/3.12.0/developingWorkflows/developing.html#best-practices-for-dockerizing-toil-workflows].

Put Your App under Version Control

As you iterate with new changes in your codebase, or as new versions of your
software are released, you will want to deploy updated copies of your app.
Keeping the app bundle directory under version control (e.g. with Git) enables
the developer to make incremental updates to the app version without losing any
past information.

Many Tapis tenants maintain organizations in Github or Gitlab. Please consult
with other members of your tenant and consider contributing your app bundle
repo to the organization. Doing so promotes transparency into the function of an
app, and enables others to build their own copies.

Considerations for Docker Images

Some Tapis tenants maintain Docker Hub organizations. Consult with your tenant
admin to find out if it would be appropriate to push your image into the
organization name space. Doing so may give added benefits in terms of privacy of
sensitive code and provenance. In addition, always make sure to name your images
with a descriptive name, an tag appropriate to the version, and LABEL your
image with a maintainer.

Modify an Existing App

Modifying an existing app would come in handy if there is a need to change the,
e.g., execution system, description, max run time, default inputs, parameter
descriptions, or a number of other things. As an example, the guide below goes
through the process of adding a reference to default input data.

Modify the App Json

To modify a Tapis app after it has been deployed, edit the original app json
file and use the command line interface to push the changes to the tenant. Below
is an example app json file from a
previous section
of this how-to guide:

{
 "checkpointable": false,
 "name": "{{ username }}-{{ app.name }}",
 "executionSystem": "{{ app.execution_system }}",
 "executionType": "HPC",
 "deploymentPath": "{{ username }}/apps/{{ app.name }}-{{ app.version }}",
 "deploymentSystem": "{{ app.deployment_system }}",
 "helpURI": "",
 "label": "{{ app.label }}",
 "shortDescription": "{{ app.description }}",
 "longDescription": "",
 "modules": [
 "load tacc-singularity"
],
 "ontology": [],
 "parallelism": "SERIAL",
 "tags": [],
 "templatePath": "runner.sh",
 "testPath": "tester.sh",
 "version": "{{ app.version }}",
 "defaultMaxRunTime": "00:30:00",
 "inputs":[
 {
 "id": "fastq",
 "value": {
 "default": "",
 "visible": true,
 "required": true
 },
 "semantics": {
 "ontology": [
 "http://edamontology.org/format_1930"
]
 },
 "details": {
 "label": "FASTQ sequence file"
 }
 }
],
 "parameters": [
 {
 "id": "CONTAINER_IMAGE",
 "value": {
 "default": "{{ docker.namespace }}/{{ docker.repo }}:{{ docker.tag }}",
 "type": "string",
 "visible": false,
 "required": true,
 "order": 1000
 }
 }
],
 "outputs": []
}

If you followed the
Create a Custom App
how-to guide, then you may have a sample fastq file located here:

agave://data-tacc-work-username/test-data/SP1.fq

Modify the original app.json file to include the complete URI to this sample
data as follows:

{
"inputs":[
 {
 "id": "fastq",
 "value": {
 "default": "agave://tacc.work.taccuser/test-data/SP1.fq",
 "visible": true,
 "required": true
 }
 }

Update the App

Then, push the app update by performing the following:

$ tapis apps update -F app.json taccuser-fastqc_app-0.11.9

If successful, Tapis will automatically increment the revision number associated
with the app. To confirm, use the tapis apps show command:

$ tapis apps show -c id -c revision taccuser-fastqc_app-0.11.9
+----------+----------------------------+
| Field | Value |
+----------+----------------------------+
| id | taccuser-fastqc_app-0.11.9 |
| revision | 2 |
+----------+----------------------------+

Further Help

Additional fields that can be used in app descriptions can be found in the
Tapis Documentation [https://tacc-cloud.readthedocs.io/en/latest/].

Share an App with Others

As a standard user of Tapis tenants, you have permissions to build and deploy
private apps only. Private apps are, by default, only visible to you. To share
an app with your colleagues, follow the steps below.

Update Permissions on an App

Assuming you have a private app called taccuser-fastqc_app-0.11.9 (developed
earlier
in this how-to guide), you can check who has permissions to access the app with
the following command:

$ tapis apps pems list taccuser-fastqc_app-0.11.9
+----------+------+-------+---------+
| username | read | write | execute |
+----------+------+-------+---------+
| taccuser | True | True | True |
+----------+------+-------+---------+

By default, the creator of an app is the only one with read, write, or execute
privileges. Next, identify the tenant username of the user with whom you would
like to share the app.

Tip

See
this page
for an example on how to find another user’s username

Given the username jdoe, grant that user permissions with:

$ tapis app pems grant taccuser-fastqc_app-0.11.9 jdoe ALL
+----------+------+-------+---------+
| username | read | write | execute |
+----------+------+-------+---------+
| taccuser | True | True | True |
| jdoe | True | True | True |
+----------+------+-------+---------+

Ask your collaborator (jdoe) to perform the tapis apps list command, and
they should now be able to see your app.

Update Permissions on an Execution System

Before your collaborator (jdoe) can run a job with your private app, they
must also have correct permissions on the execution system associated with the
app.

Find the execution system associated with your private app
$ tapis apps show -c executionSystem taccuser-fastqc_app-0.11.9
+-----------------+-------------------------+
| Field | Value |
+-----------------+-------------------------+
| executionSystem | tacc.stampede2.taccuser |
+-----------------+-------------------------+

List permissions on the execution system
$ tapis systems roles list tacc.stampede2.taccuser
+----------+-------+
| username | role |
+----------+-------+
| taccuser | OWNER |
+----------+-------+

Grant 'USER' permission to your collaborator
$ tapis systems roles grant tacc.stampede2.taccuser jdoe USER
+----------+-------+
| username | role |
+----------+-------+
| taccuser | OWNER |
| jdoe | USER |
+----------+-------+

Ask your collaborator to perform the tapis systems list command, and they
should now be able to see your private system. Now, your collaborator can run
jobs against your private app using the same job.json file and
tapis jobs submit commands as you.

Publish the App Globally

Standard users do not have the appropriate permissions to make an app public,
thereby sharing it with all users on the tenant. If you have deployed and tested
an app, and think it would be of general use to the community, please contact
your
tenant admin
to ask for information on publishing your app.

Set up a Workflow

This guide will demonstrate a few common ways users can leverage the Tapis CLI
for complex workflows.

Chain Multiple Apps

A useful feature of Tapis is the ability to use the output of one job as the
input of a second job. It saves time and avoids unnecessary file transfers by
keeping the input / output within Tapis “job API space”. For example, consider
the following two hypothetical apps:

	App Name

	Input

	Output

	ImageClassifier-1.0

	image.jpg

	report.txt*

	FileZipper-1.0

	report.txt*

	report.txt.zip

In these examples, the first app, ImageClassifier-1.0 takes an image file as
input, and produces an output report.txt file. The second app, FileZipper-1.0,
takes the output report.txt and compresses it to report.txt.zip.

First, submit a job against the first app:

Assemble job1.json file
$ cat job1.json
{
 "name": "Image Classifier Demo Job",
 "appId": "ImageClassifier-1.0",
 "archive": false,
 "inputs": {
 "image": "agave://tacc.work.taccuser/test-data/image.jpg"
 },
 "parameter": {}
}

Submit the job
$ tapis jobs submit -F job1.json
+--------+---+
| Field | Value |
+--------+---+
id	f0cb69a1-63a4-4970-9921-843968e66723-007
name	Image Classifier Demo Job
status	ACCEPTED
+--------+---+

When it is done, list the outputs
$ tapis jobs outputs list f0cb69a1-63a4-4970-9921-843968e66723-007
+------------+---------------+---------+
| name | lastModified | length |
+------------+---------------+---------+
...		
report.txt	2 minutes ago	116625
...		
+------------+---------------+---------+

Now that the first job is done, prepare and submit the second job referencing
the output from the first job. The URI pointing to the report.txt file takes a
very specific form:

Assemble job2.json file
$ cat job2.json
{
 "name": "File Zipper Demo Job",
 "appId": "FileZipper-1.0",
 "archive": false,
 "inputs": {
 "file": "https://api.tacc.utexas.edu/jobs/v2/f0cb69a1-63a4-4970-9921-843968e66723-007/outputs/media/report.txt"
 },
 "parameter": {}
}

Submit the job
$ tapis jobs submit -F job2.json
+--------+---+
| Field | Value |
+--------+---+
id	3fea4b88-424a-4c25-b0ef-6e6908eed843-007
name	File Zipper Demo Job
status	ACCEPTED
+--------+---+

When it is done, list the outputs
$ tapis jobs outputs list 3fea4b88-424a-4c25-b0ef-6e6908eed843-007
+----------------+---------------+--------+
| name | lastModified | length |
+----------------+---------------+--------+
...		
report.txt.zip	2 minutes ago	2906
...		
+----------------+---------------+--------+

If everything worked correctly, you should now see the final zipped file when
listing the job outputs. As long as you remain on the tacc.prod tenant, much
of the URI to the temporary file will remain the same:

https://api.tacc.utexas.edu/ # base URL - DO NOT CHANGE
jobs/v2/ # refers to jobs API - DO NOT CHANGE
f0cb69a1-63a4-4970-9921-.../ # job ID from step 1
outputs/media/ # location of output data - DO NOT CHANGE
report.txt # name of output file from step 1

Finally, the zipped report can be downloaded as:

$ tapis jobs outputs download 3fea4b88-424a-4c25-b0ef-6e6908eed843-007 report.txt.zip
+-------------+-------+
| Field | Value |
+-------------+-------+
downloaded	1
skipped	0
messages	0
elapsed_sec	8
+-------------+-------+

Parameter Sweeps

Many public apps are designed to take one input file or configuration, run an
analysis, and return a result. With some simple scripting, it is possible to
perform parameter sweeps using multiple Tapis jobs. For example, imagine you
would like to run FastQC on a series of FASTQ files named: fastq_01.fq,
fastq_02.fq, fastq_03.fq, etc.:

Organize the data in a local folder:
$ ls fastq_data/
fastq_01.fq fastq_02.fq fastq_03.fq

Upload all fastqc files to a storage system
$ tapis files upload agave://tacc.work.taccuser/test-data/ fastq_data
+-------------------+----------+
| Field | Value |
+-------------------+----------+
uploaded	3
skipped	0
messages	0
bytes_transferred	65.83 kB
elapsed_sec	8
+-------------------+----------+

Create a template json file:
$ tapis jobs init --no-archive --no-notify taccuser-fastqc_app-0.11.9 > job_template.json
$ cat job_template.json
{
 "name": "taccuser-fastqc_app-job-1589474193147",
 "appId": "taccuser-fastqc_app-0.11.9",
 "archive": false,
 "inputs": {
 "fastq": "agave://tacc.work.taccuser/public/SP1.fq"
 },
 "parameters": {}
}

The next step is to write a short script around the job_template.json
template that populates the file name into a new job json file, then submits the
ob. Here is an example script:

#!/bin/bash

for FILE in ` ls fastq_data/ `
do

cat <<EOF >fastqc.json
{
 "name": "FastQC $FILE",
 "appId": "taccuser-fastqc_app-0.11.9",
 "archive": false,
 "inputs": {
 "fastq": "agave://tacc.work.taccuser/test-data/fastq_data/$FILE"
 },
 "parameters": {}
}
EOF

tapis jobs submit -F fastqc.json

done

Finally, execute the script:

$ bash parameter_sweep.sh
+--------+--+
| Field | Value |
+--------+--+
id	eef0030f-77d6-4a98-8893-a385137c3b44-007
name	FastQC fastq_01.fq
status	ACCEPTED
+--------+--+	
+--------+--+	
Field	Value
+--------+--+	
id	130a2099-3ae5-4f2c-ab2d-840a642cb2a9-007
name	FastQC fastq_02.fq
status	ACCEPTED
+--------+--+	
+--------+--+	
Field	Value
+--------+--+	
id	73ace158-7195-463f-b436-c4a519f7ba83-007
name	FastQC fastq_03.fq
status	ACCEPTED
+--------+--+

$ tapis jobs list --limit 3
+--+--------------------+--------+
| id | name | status |
+--+--------------------+--------+
73ace158-7195-463f-b436-c4a519f7ba83-007	FastQC fastq_03.fq	QUEUED
130a2099-3ae5-4f2c-ab2d-840a642cb2a9-007	FastQC fastq_02.fq	QUEUED
eef0030f-77d6-4a98-8893-a385137c3b44-007	FastQC fastq_01.fq	QUEUED
+--+--------------------+--------+

This is a simple example of a control script with plenty of room for advanced
features and error checking.

Work with Actors

In Tapis, actors are container-based functions-as-a-service that follow the
actor model of concurrent computation. An actor responds to messages it receives
by changing its state, performing an action, sending out response messages, or
all of the above.

The function an actor performs is exposed as the default command in a container.
It is typically quick and requires little processing power - i.e. an app may be
configured to
run FastQC,
and an actor may trigger a job using that app.

The guide below is a brief introduction to interacting with actors on the Tapis
platform. For a full reference guide to actors, see the
Abaco Documentation [https://tacc-cloud.readthedocs.io/projects/abaco/en/latest/index.html].

Create a New Actor

The function of an actor is exposed as the default command in a Docker
container. Here, we will create an actor from an existing Docker container image
called tacc/hello-world:latest available on
Docker Hub [https://hub.docker.com/repository/docker/tacc/hello-world].
The default command for this container simply prints the message “Hello, World” or
the message sent to it, which will be captured in the actor logs.

Create the actor as:

$ tapis actors create --repo tacc/hello-world:latest \
 -n example-actor \
 -d "Test actor that says Hello, World"
+----------------+-----------------------------+
| Field | Value |
+----------------+-----------------------------+
id	NN5N0kGDvZQpA
name	example-actor
owner	taccuser
image	tacc/hello-world:latest
lastUpdateTime	2021-07-14T22:25:06.171534
status	SUBMITTED
cronOn	False
+----------------+-----------------------------+

The --repo flag points to the Docker Hub repo on which this actor is based,
the -n flag and -d flag attach a human-readable name and description to
the actor, the -e flags demonstrate how to set (optional) environment
variables for the actor.

The resulting actor is assigned an id: NN5N0kGDvZQpA. The actor id can be
queried by:

$ tapis actors show -v NN5N0kGDvZQpA
{
 "id": "NN5N0kGDvZQpA",
 "name": "example-actor",
 "description": "Test actor that says Hello, World",
 "owner": "sgopal",
 "image": "tacc/hello-world:latest",
 "createTime": "2021-07-14T22:25:06.171Z",
 "lastUpdateTime": "2021-07-14T22:25:06.171Z",
 "defaultEnvironment": {},
 "gid": 862347,
 "hints": [],
 "link": "",
 "mounts": [],
 "privileged": false,
 "queue": "default",
 "stateless": true,
 "status": "READY",
 "statusMessage": " ",
 "token": true,
 "uid": 862347,
 "useContainerUid": false,
 "webhook": "",
 "cronOn": false,
 "cronSchedule": null,
 "cronNextEx": null,
 "_links": {
 "executions": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA/executions",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/sgopal",
 "self": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA"
 }
 }

Above, you can see the plain text name, description, and any default environment
variables that were passed on the command line. In addition, you can see the
“status” of the actor is “READY”, meaning it is ready to receive and act on
messages. Finally, you can list all actors visible to you with:

$ tapis actors list
+---------------+---------------+----------+-----------------------------+----------------------------+--------+-------+
| id | name | owner | image | lastUpdateTime | status | cronOn|
+---------------+---------------+----------+-----------------------------+----------------------------+--------+-------+
| NN5N0kGDvZQpA | example-actor | taccuser | tacc/hello-world:latest | 2021-07-14T22:25:06.171Z | READY | False |
+---------------+---------------+----------+-----------------------------+----------------------------+--------+-------+

Probe the Underlying Container

An actor now exists and is waiting for a message to respond to. But, how will
the actor respond when sent a message? We can probe the underlying container to
figure out what this specific actor will do. First pull the container locally:

$ docker pull tacc/hello-world:latest
latest: Pulling from tacc/hello-world
Digest: sha256:baf7241b9d6fb1b123825021b831337307b9fa0aa4d45b14c9405ebf2a36a929
Status: Image is up to date for tacc/hello-world:latest
docker.io/tacc/hello-world:latest

Then find the default command for the container:

$ docker inspect tacc/hello-world:latest | jq ".[].ContainerConfig.Cmd"
[
 "/bin/sh",
 "-c",
 "#(nop) ",
 "CMD [\"python\" \"/hello_world.py\"]"
]

It runs hello_world.py at the root level. Print out the contents of hello_world.py
to inspect:

$ docker run --rm tacc/hello-world:latest cat /hello_world.py

1 """Say Hello, World or the message received from user input"""
2 from agavepy.actors import get_context
3
4 def say_hello_world(m):
5 """Print message from user if present, else echo "Hello, World"""
6 if m == " ":
7 print("Actor says: Hello, World")
8 else:
9 print("Actor received message: {}".format(m))
10
11 def main():
12 """Main entry to grab message context from user input"""
13 context = get_context()
14 message = context['raw_message']
15 say_hello_world(message)
16
17 if __name__ == '__main__':
18 main()

This container, when run, will first get the message that was passed to it (from
the get_context() function, line 10). Then it will print various parts of
the message and the environment.

Submit a Message to the Actor

Next, let’s craft a simple message to send to the reactor. Messages can be plain
text or in JSON format. When using the python actor libraries as in the example
above, JSON-formatted messages are made available as python dictionaries.

Write a message
$ export MESSAGE='Hello, World'
$ echo $MESSAGE
Hello, World

$ Submit the message to the actor
$ tapis actors submit -m "$MESSAGE" NN5N0kGDvZQpA
+-------------+---------------+
| Field | Value |
+-------------+---------------+
| executionId | N4xQ5WM5Np1X0 |
| msg | Hello, World |
+-------------+---------------+

The id of the actor (N4xQ5WM5Np1X0) was used on the command line to specify
which actor should receive the message. In response, an “execution id”
(N4xQ5WM5Np1X0) is returned. An execution is a specific instance of an actor.
List all the executions for a given actor as:

The above execution has already completed. Show detailed information for the
execution with:

$ tapis actors execs show -v boEg3mEvrKO5w ayB45Oe8GJvAA
{
 "actorId": "NN5N0kGDvZQpA",
 "apiServer": "https://api.tacc.utexas.edu",
 "cpu": 121748743,
 "exitCode": 0,
 "finalState": {
 "Dead": false,
 "Error": "",
 "ExitCode": 0,
 "FinishedAt": "2021-07-14T22:32:45.602Z",
 "OOMKilled": false,
 "Paused": false,
 "Pid": 0,
 "Restarting": false,
 "Running": false,
 "StartedAt": "2021-07-14T22:32:45.223Z",
 "Status": "exited"
 },
 "id": "N4xQ5WM5Np1X0",
 "io": 176,
 "messageReceivedTime": "2021-07-14T22:32:37.051Z",
 "runtime": 1,
 "startTime": "2021-07-14T22:32:44.752Z",
 "status": "COMPLETE",
 "workerId": "JABKl4BeDwXJD",
 "_links": {
 "logs": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA/executions/N4xQ5WM5Np1X0/logs",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/sgopal",
 "self": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA/executions/N4xQ5WM5Np1X0"
 }
}

Check the Logs for an Execution

An execution’s logs will contain whatever was printed to STDOUT / STDERR by the
actor. In our demo actor, we just expect the actor to print the message passed to it.

$ tapis actors execs logs NN5N0kGDvZQpA N4xQ5WM5Np1X0
Logs for execution N4xQ5WM5Np1X0
 Actor received message: Hello, World

Sure enough, the information in the execution logs match what we expected
hello_world.py to print. The message was pulled in by the
get_context() function. It was not done in this script, but in a normal
scenario, the actor would then act on the contents of that message to, e.g.,
kick off a job, perform some data management, send messages to other actors, or
more.

Run Synchronously

The previous message submission (with tapis actors submit) was an
asynchronous run, meaning the command prompt detached from the process after
it was submitted to the actor. In that case, it was up to us to check the execution
to see if it had completed and manually print the logs.

There is also a mode to run actors synchronously using tapis actors run,
meaning the command line stays attached to the process awaiting a response after
sending a message to the actor. For example:

$ tapis actors run -m "$MESSAGE" NN5N0kGDvZQpA
FULL CONTEXT:
{
 "username": "taccuser",
 "HOSTNAME": "33d4dd334ef9",
 "_abaco_worker_id": "X5xGkZ0lol0D3",
 "raw_message": "Hello, World",
 "actor_dbid": "TACC-PROD_boEg3mEvrKO5w",
 "new_foo": "new_bar",
 "_abaco_container_repo": "tacc/hello-world:latest",
 "content_type": null,
 "PATH": "/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin",
 "MSG": "{\"key1\":\"value1\", \"key2\":\"value2\"}",
 "HOME": "/",
 "_abaco_actor_state": "{}",
 "_abaco_actor_name": "example-actor",
 "_abaco_Content_Type": "str",
 "execution_id": "jP3RExQW108wM",
 "_abaco_synchronous": "True",
 "_abaco_access_token": "de6d11bdbb5a16bdd85beec692b1b283",
 "message_dict": {
 "key2": "value2",
 "key1": "value1"
 },
 "_abaco_api_server": "https://api.tacc.utexas.edu",
 "_abaco_actor_dbid": "TACC-PROD_boEg3mEvrKO5w",
 "_abaco_jwt_header_name": "X-Jwt-Assertion-Tacc-Prod",
 "_abaco_actor_id": "boEg3mEvrKO5w",
 "_abaco_execution_id": "jP3RExQW108wM",
 "state": "{}",
 "_abaco_username": "taccuser",
 "actor_id": "boEg3mEvrKO5w"
}
...

The output above is truncated because it is mostly the same response as our
first execution of the actor. This time, however, we did not need to query the
logs for this execution for them to print to screen - that was done
automatically. In addition, the new environment variable settings can be seen
in the context (see highlighted line).

Delete an Actor

Similar to other resources in Tapis, actors can be deleted with the following:

$ tapis actors delete NN5N0kGDvZQpA
+----------+-------------------+
| Field | Value |
+----------+-------------------+
| deleted | ['NN5N0kGDvZQpA'] |
| messages | [] |
+----------+-------------------+

This will delete the actor and any associated executions.

Initialize a new Tapis Actor project

This guide will demonstrate how to create a custom actor from scratch. It is
assumed you are already familiar with how to
Work with Actors.
In this example, we will build a simple word count actor that counts and prints
the number of words in a provided message.

We will demonstrate how to initialize an actor project from scratch.

Create a project “hello_world_actor”

To get started with creating an actor, running the tapis actors init command will fetch a very simple
code skeleton you can fill in and deploy.

For example:

$ tapis actors init

+-------+---+
| stage | message |
+-------+---+
setup	Project path: ./new_actor
setup	CookieCutter variable name=new_actor
setup	CookieCutter variable project_slug=new_actor
setup	CookieCutter variable docker_namespace=reshg
setup	CookieCutter variable docker_registry=e
clone	Project path: ./new_actor
+-------+---+

Note

There are many project templates you can start working with. See tapis actors init –list-templates
for an up to date listing.

$ tapis actors init --list-templates
+--------------------+--------------------+--+----------+
| id | name | description | level |
+--------------------+--------------------+--+----------+
default	Default	Basic code and configuration skeleton	beginner
echo	Echo	Echo message	beginner
hello_world	Hello World	Say Hello, World!	beginner
sd2e_base	sd2e_base	Default reactor context for	beginner
		docker://sd2e/reactors:python3	
tacc_reactors_base	tacc_reactors_base	Default actor context for	beginner
		docker://sd2e/reactors:python3	
+--------------------+--------------------+--+----------+

To use one of these templates:

$ tapis actors init --template hello_world

Components of an Actor

The new_actor/ project would contain the following files:

$ tree ../new_actor/
new-actor/
├── Dockerfile
├── project.ini
├── config.yml
├── default.py
├── requirements.txt
├── secrets.jsonsample
└── message.jsonschema

Write the Actor Function

The default.py script can be renamed to hello_world.py. The python script is where the code for your
main function can be found. An example of a functional actor that says “Hello, World” is:

"""Say Hello, World or the message received from user input"""
from agavepy.actors import get_context

function to print the message
def say_hello_world(m):
"""Print message from user if present, else echo "Hello, World"""
 if m == " ":
 print("Actor says: Hello, World")
 else:
 print("Actor received message: {}".format(m))

def main():
"""Main entry to grab message context from user input"""
 context = get_context()
 message = context['raw_message']
 say_hello_world(message)

if __name__ == '__main__':
 main()

This code makes use of the agavepy python library which we will install in
the Docker container. The library includes an “actors” object which is useful to
grab the message and other context from the environment. And, it can be used to
interact with other parts of the Tapis platform. Add the above code to your
hello_world.py file.

Define Requirements

The requirements.txt file may contain the dependencies required for a project.
The default requirements.txt contains agavepy python package.

Create a Dockerfile

The only requirements are python and the agavepy python library, which is
available through
PyPi [https://pypi.org/]. These are mentioned in the requirements.txt file
A bare-bones Dockerfile needs to satisfy those dependencies, add the actor
python script, and set a default command to run the actor python script.
The following lines should be present in your Dockerfile:

pull base image
FROM python:3.7-alpine

add requirements.txt to docker container
ADD requirements.txt /requirements.txt

install requirements.txt
RUN pip3 install -r /requirements.txt

add the python script to docker container
ADD hello_world.py /hello_world.py

command to run the python script
CMD ["python", "/hello_world.py"]

Tip

Creating small Docker images is important for maintaining actor speed and
efficiency

Runtime Preparation

	Define secrets.json: Rename secrets.json.sample to secrets.json,
and obtain the required values from the Infrastructure team for secrets.json.

	Define message.jsonschema: Define the Schema for Actor launch message.

Build and Push the Dockerfile

The Docker image must be pushed to a public repository in order for the actor
to use it. Use the following Docker commands in your local actor folder to build
and push to a repository that you have access to:

Build and tag the image
$ docker build -t taccuser/hello-world:1.0 .
Sending build context to Docker daemon 4.096kB
Step 1/5 : FROM python:3.7-slim
...
Successfully built b0a76425e8b3
Successfully tagged taccuser/hello-world:1.0

Push the tagged image to Docker Hub
$ docker push taccuser/hello-world:1.0
The push refers to repository [docker.io/taccuser/word-count]
...
1.0: digest: sha256:67cc6f6f00589d9ae83b99d779e4893a25e103d07e4f660c14d9a0ee06a9ddaf size: 1995

Create the Actor

Next, create an actor referring to the Docker repository above.

$ tapis actors create --repo taccuser/hello-world:1.0 \
 -n hello-world \
 -d "Actor to say Hello, World"
+----------------+----------------------------+
| Field | Value |
+----------------+----------------------------+
id	NN5N0kGDvZQpA
name	hello-world
owner	taccuser
image	taccuser/hello-world:1.0
lastUpdateTime	2021-07-14T22:25:06.171534
status	SUBMITTED
cronOn	False
+----------------+-----------------------------+

After a few seconds, the actor should be in state “READY”, meaning it is ready
to accept and process messages. Verbosely show the actor metadata to see that
it’s status is “READY”, it is pointing to the correct docker image, and that it
received the environment variables from environment.json:

$ tapis actors show -v NN5N0kGDvZQpA
{
 "id": "NN5N0kGDvZQpA",
 "name": "example-actor",
 "description": "Test actor that says Hello, World",
 "owner": "sgopal",
 "image": "tacc/hello-world:latest",
 "createTime": "2021-07-14T22:25:06.171Z",
 "lastUpdateTime": "2021-07-14T22:25:06.171Z",
 "defaultEnvironment": {},
 "gid": 862347,
 "hints": [],
 "link": "",
 "mounts": [],
 "privileged": false,
 "queue": "default",
 "stateless": true,
 "status": "READY",
 "statusMessage": " ",
 "token": true,
 "uid": 862347,
 "useContainerUid": false,
 "webhook": "",
 "cronOn": false,
 "cronSchedule": null,
 "cronNextEx": null,
 "_links": {
 "executions": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA/executions",
 "owner": "https://api.tacc.utexas.edu/profiles/v2/sgopal",
 "self": "https://api.tacc.utexas.edu/actors/v2/NN5N0kGDvZQpA"
 }
 }

Run a Test Execution

Finally, pass a message to the actor to run a test execution. The number of
words in the message should be returned in the actor execution logs:

Send a message to the word-count actor
$ tapis actors submit -m "Hello, World" NN5N0kGDvZQpA
+-------------+-------------------------------------+
| Field | Value |
+-------------+-------------------------------------+
| executionId | NN5N0kGDvZQpA |
| msg | Hello, World |
+-------------+-------------------------------------+

List executions of the word-count actor
$ tapis actors execs list NN5N0kGDvZQpA
+---------------+----------+
| executionId | status |
+---------------+----------+
| N4xQ5WM5Np1X0 | COMPLETE |
+---------------+----------+

Get the logs from the completed actor execution
$ tapis actors execs logs NN5N0kGDvZQpA N4xQ5WM5Np1X0
Logs for execution N4xQ5WM5Np1X0
 Actor received message: Hello, World

The actor can also be run synchronously using tapis actors run:

$ tapis actors run -m "Hello, World" NN5N0kGDvZQpA
Actor received message: Hello, World

Next Steps

Remember to put your actor under version control. Use a .gitignore file to
avoid accidentally committing anything that contains API keys or passwords.

Please refer to the
Abaco Documentation [https://tacc-cloud.readthedocs.io/projects/abaco/en/latest/index.html]
for more information on creating and working with actors.

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Tapis CLI How-To Guide

 		
 Install the CLI

 		
 Install with Pip

 		
 Install from Source

 		
 Run in a Container

 		
 Request Access to a Tenant

 		
 Initialize a Session

 		
 Interact with Systems

 		
 Find Systems

 		
 Discover System Hostname and Default Paths

 		
 Check System Status

 		
 Perform Basic File Operations

 		
 List Files and Navigate the File Tree

 		
 Upload and Download Files

 		
 Other File Operations

 		
 File or Folder History

 		
 Further Help

 		
 Import Data from Alternative Sources

 		
 Import Files from other Systems

 		
 Import Files from the Web

 		
 Share Data with Others

 		
 Find Another User

 		
 Share Files with Another User

 		
 Revoke Permissions

 		
 Share Files Using Postits

 		
 Find an Application

 		
 List Available Applications

 		
 Search for Applications by Name

 		
 Display Application Information

 		
 Important Application Sections

 		
 Prepare and Submit a Job

 		
 Build a Job Template File

 		
 Submit a Job

 		
 Track a Job

 		
 Download the Results

 		
 Job Archives

 		
 Create a Private System

 		
 Gather Relevant Information

 		
 Register a Storage System

 		
 Register an Execution System

 		
 Additional Help

 		
 Modify an Existing System

 		
 Modify a Storage System

 		
 Modify an Execution System

 		
 Create a Custom App

 		
 Components of an App

 		
 Create an App by Example

 		
 Initialize the App Directory

 		
 Containerize the Executable

 		
 Deploy and Test the App

 		
 Best Practices and Next Steps

 		
 Modify an Existing App

 		
 Modify the App Json

 		
 Update the App

 		
 Further Help

 		
 Share an App with Others

 		
 Update Permissions on an App

 		
 Update Permissions on an Execution System

 		
 Publish the App Globally

 		
 Set up a Workflow

 		
 Chain Multiple Apps

 		
 Parameter Sweeps

 		
 Work with Actors

 		
 Create a New Actor

 		
 Probe the Underlying Container

 		
 Submit a Message to the Actor

 		
 Check the Logs for an Execution

 		
 Run Synchronously

 		
 Delete an Actor

 		
 Initialize a new Tapis Actor project

 		
 Create a project “hello_world_actor”

 		
 Components of an Actor

 		
 Write the Actor Function

 		
 Define Requirements

 		
 Create a Dockerfile

 		
 Runtime Preparation

 		
 Build and Push the Dockerfile

 		
 Create the Actor

 		
 Run a Test Execution

 		
 Next Steps

_static/comment-bright.png

_static/ajax-loader.gif

